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Deep Learning

Already Covered:

® Pytorch as a dataflow system of with a graph of tensors, operations, and
building blocks

® Implementation of Linear Regression in PyTorch
® Minimizing error (concept of gradient descent)

e Parallelisms: Data Parallelism and Model Parallelism

(see topic (5) Neural Network Workflow Systems)
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Linear Regression and Gradient Descent

Initial a

loss

y=/3’0+/3’1x

https://www.desmos.com/calculator/y8j7sejtuw
https://www.desmos.com/calculator/2usyk3ykts

I,\‘:jnf; w — ,-"‘.jp'l‘('"f v v x gra(:]'

(rasbt, http://rasbt.github.io/mlixtend/user_guide/general_concepts/gradient-optimization/)
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Linear Regression and Gradient Descent

loss =X (y_pred - y)*

y_pred=mx+b

y_pred = +f x

,'\:—377('—10 — ‘,\"_3])7'(5-1; - a * g]. a(_].

https://www.desmos.com/calculator/y8j7sejtuw
https://www.desmos.com/calculator/2usyk3ykts

(rasbt, http://rasbt.github.io/mlixtend/user_guide/general_concepts/gradient-optimization/)
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Linear Regression

Finding a linear function based on X to best yield Y.
X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

X =x)

F

Regression: (1) = E(Y

goal: estimate function r

The expected value of Y, given

that the random variable X is
equal to some specific value, x.



Linear Regression

Finding a linear function based on X to best yield Y.
X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

X =x)

Regression: r(z) = B(Y

goal: estimate the function r

Linear Regression (univariate version): ,
r [ X ] e .‘:f"_'))( ) T jl €T

r [ r)~ B ( YIX =2 )

s

goal: find g, B, such that




Linear Regression

Simple Linear Regression Y- = 30 + 31)(2 + €;

where E(¢e;|X;) = 0 and V(¢;| X;) = o

r(x) = 0y + 51x



Linear Regression

Intercept slope error
Simple Linear Regressi > 3 i
Imple Linear Regression )/2 — d() - le < €;

where E(¢;|X;) = 0 and V(e !I)& ) =

l
expected variance




Linear Regression: Estimating Params

Simple Linear Regression }/Z — 30 + 31X2 + €

where E(¢;|X;) = 0 and V(¢|X;) = o*

How to estimate intercept ([ /) and slope intercept ('1,)?

Least Squares Estimate. Find 5»0 and 51 which minimizes
the residual sum of squares: | | n

J) = BSS =38 =3 (V- V) = > (Vi - & - 4X)
=1 1=1

=1



Pearson Product-Moment Correlation

Covariance
Cov(X.Y)=E(XY) - E(X)E(Y)
=E((X - X)(Y -Y))
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SY Sy



Pearson Product-Moment Correlation

Covariance

Cov(X.Y)=E(XY) - E(X)E(Y)
=E((X - X)(Y -Y))

Correlation (ctandardized covariance)
Cov(X.,Y)

SxSy

1 Z X, - X\ [(Yi-Y
S n-—1 — SX SY

T = ',1-\")..' =




Pearson Product-Moment Correlation

Covariance
Cov(X.Y)=E(XY) - E(X)E(Y)

_E((X - X)(¥ - 1))
Correlation

_ Cou(X.Y)

r=rxy s
P _\' )

- Z Xi—- X\ (Yi-Y
o1\ -

/ Lin Reg Direct Estimates \

(normal equations)

-

Z?:l()(z — X')(}f _ Yf)
S i (Xi — X)?
30 — Y’ - 31 )—(

A /

81 =




Pearson Product-Moment Correlation

Covariance / Lin Reg Direct Estimates \

Cov(X,Y) =E(XY) - E(X)E(Y) (normal equations)
=E((X -X)(Y -Y))

Correlation TR — =
5 X = O - V)
"ov( XY ~l = no/v v\ 2
r=rxy = c Oi “}:) ) ZZZ].(\"XZ - _;X )_
L-\'»w )

1 "/ X — X Y — V' 30 — Yf — 31){’
LA ED

f:l "5-\ '—H}" \\ /




Pearson Product-Moment Correlation

Covariance / Lin Reg Direct Estimates \

Cov(X,Y) =E(XY) - E(X)E(Y) (normal equations)
=E((X -X)(Y -Y))

Correlation

S (X - X))V -Y)

o B) = _
‘\' i .‘. A / ' . : - el .')
=iy = Cov(X.Y) Zizl(*’x‘i — X)2

SxSy

1 " X — X Y — Y’ 30 = Y’ — 31)—(
:n.—l;( Sx )( Sy ) \\ /

If one standardizes X and Y (i.e. subtract the mean and divide by the

standard deviation) before running linear regression, then:
77




Pearson Product-Moment Correlation

Covariance / Lin Reg Direct Estimates \

Cov(X,Y) =E(XY) - E(X)E(Y) (normal equations)
=E((X -X)(Y -Y))

Correlation

. b =|Zim X~ OF 1)
ey = Cov(X.Y) | z ;1:1(4}({ — X )2

SxSy

1l |/ X;—-X\ /Y. -V ..50 =Y - ‘.315(
:n.—lz( Sx )( Sy ) \\ /

If one standardizes X and Y (i.e. subtract the mean and divide by the
standard deviation) before running linear regression, then:

B, =0 and 3, =r -- ie g, isthe Pearson correlation!

i=1




Useful Plots: Correlation

Scatter Plot: for two variables expected to be associated (with optional regression line)

[ : < & 0:. ®
L 4
® .. @ o x‘.c
L @
© ‘0' L = .o ’ o E o ...;0
- o~. °o..~.‘ - .“.03 s, -h ob
3 A ° % e °
s B g . :
.w L o (A ‘ . ° o* ¢
. ° B ® © ® "s o © %
! 0‘ o ° ’ ® o 0: . Ch .
. = null / no relationship strong, non-linear ( art|0)
strong, positive, linear moderate, negative, linear

Correlation Matrix: for comparing associations between many variables (use Bonferroni correction if hyp testing)

0.2
FriendSize Intelligence Quotient Income Sat W/ Life Depression ' ! ' j ‘
Openness
F1 0.03 0.04 0.12 0.02 -0.1 0.1
Conscientiousness
F2) 0.04 -0.26 -0.19 -0.09 0.11
Extraversion 0.0
F3| -0.07 -0.13 0.02 -0.02 -0.02
Agreablen
Fa -0.03 0.27 -0.08 -0.12 011 greableness -0.1
F5 -0.01 0.23 0.29 0.07 021 Neuroticism
\w‘ 7 §‘ 7 ‘Z" g, _02
Fig 3. Individual factor correlations with outcomes. Note how F4 which captures the use of swear words negatively correlates with o QQI N rd & N
Satisfaction with Life (SWL). 5’ I3 So °¢ G’U 0)5
IS g v o3
https://doi.org/10.1371/journal.pone.0201703.g003 O S s H
g . K (Liu et al., 2016)



http://wwbp.org/papers/persimages16icwsm.pdf
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Multiple Linear Regression

Simple Linear Regression Y. = .}0 un f_))l Y. + €
7 - el i 1

o

where E(:E;!){;) = 0 and V(E,‘l)&'; ) = a-

Estimated intercept and slope
r(x) =0+ bz v, = #(X,)
Residual: ¢ =Y, — Y,




Multiple Linear Regression

Suppose we have multiple X that we’d like to fit to Y at once:
}/z — 30 31 )(ﬂ 32 )(-ig . .,i'f'))m X m1 €;

[f we include and X = 1 for all i (i.e. adding the intercept to X), then we can
say. m

Yi=> 8 Xij+e

7=0




Multiple Linear Regression

Suppose we have multiple X that we’d like to fit to Y at once:
Yi = 0o+ 51Xt + 5o Xio + oo + B X1 + €

If we include and X _ = 1 for all i, then we can say:

m

. . /Or In vector notation across all i: \
Yi=) BiXi+e Y =XB+e

7=0 where "3 and € are vectors and
X 1s a matrix.

\_ /




Multiple Linear Regression

Suppose we have multiple X that we’d like to fit to Y at once:
Yi = 0o+ 51Xt + 5o Xio + oo + B X1 + €

If we include and X _ = 1 for all i, then we can say:

m

. . /Or In vector notation across all i: \
Yi=) BiXi+e Y =XB+e

7=0 where "3 and € are vectors and
X 1s a matrix.

Estimating ‘,3 ;

B=(XTxX)1xTy
N L

/!




Multiple Linear Regression

Suppose we have multiple X that we’d like to fit to Y at once:

Yi= 00+ 51 Xin + BoXio + ... + Bin X1 + €

If we include and X _ = 1 for all i, then we can say:

/Or in vector notation across all i: \
Y =XB+e¢

— where (3 and € are vectors and
X is a matrix.

Estimating ‘,3 ;
«— Use Gradient Descent

I ...
Y5 / v
A1)
M) :
I ;

2R :

7577, 1 :

77

7 7

N

I .
/,I”I

NN
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Logistic Regression on a single feature (x)

Y. €{0, 1}; Xis a single value and can be anything numeric.
ePo+017;

1 4+ ePotbiz;

PY,=1|X;, =z) =



Logistic Regression on a single feature (x)
Y. €{0, 1}; Xis a single value and can be anything numeric.
ePo+017;
1 4+ ePotbiz;
|

PY,=1|X;, =z) =

— 1 + 6—(,30+Z§n:1 Bizij)



Logistic Regression on a single feature (x)

Y. €{0, 1}; Xis a single value and can be anything numeric.
ePo+017;

1 4+ ePotbiz;
B 1
_ 1 + 6—(50+Z§n:1 Bizij)

1
1 _I_e—IBgc (vector multiply)

PY,=1|X;, =z) =




Logistic Regression on a single feature (x)

Y. €{0, 1}; X can be anything numeric.

/\ ePotbiz;

PY:=1|Xi=1z) = 1 4+ ePotbiz;

The goal of this function is to: take in the variable x and

return a probability that Yis 1.



Logistic Regression on a single feature (x)

Y. €{0, 1}; X can be anything numeric.

—

el

_I_

Pifri

1+ €

The goal of this function is to: take in the variable x and

return a probability that Yis 1.

Note that there are only three variables on the right: X,B, B,




Logistic Regression on a single feature (x)

Y. €{0, 1}; X can be anything numeric.

/\ o 30 n 5.1],;?-.

The goal of this function is to: take in the variable x and

return a probability that Yis 1.

Note that there are only three variables on the right: X,B, B,

Xis given. B ) and B ,must be learned.




Logistic Regression on a single feature (x)

Y. €{0, 1}; X can be anything numeric.
=PY,i=1|X,=12) = —1=
Pi= ! ! 1 + dBo{B:

/

HOW? Essentially, try different B
and B | values until “best fit” to the

training data (example X and Y). | -

Xis given. B and B, must be learned. .




“best fit” : whatever maximizes the likelihood function:

(50751|X Y) Hp )Y (1 — p(x;) Y

1 + o)

HOW? Essentially, try different B
and B, values until “best fit” to the
training data (example X and Y).

Xis given. B ) and B ,must be learned.



“best fit” : whatever maximizes the likelihood function:

L(Bo, 1 X, Y) = [ [ plai)” (1 = pla:)' ™
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“best fit” : more efficient to maximize log likelihood :



“best fit” : whatever maximizes the likelihood function;
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“best fit” : more efficient to maximize log likelihood :
N

Zyzlogp z;)+(1—y;)log (1—p(z;))



“best fit” : whatever maximizes the likelihood function;

L(Bo, 1 X, Y) = [ [ plai)” (1 = pla:)' ™

“best fit” : more efficient to maximize log likelihood :

N
(B) =) yilog p(x;)+(1—y;)log (1—p(x;))
=1

“best fit” for neural networks: software designed to minimize rather than maximize
(typically, normalized by N, the number of examples.)



From Likelihood to Cross Entropy Loss

Logistic Regression Likelihood: L(Bo, 81, ..., B| X, Y) = Hp(xi)yi(l _

1 N |V
Final Cost Function: J Z Zyi ]log yfj) -- “cross entropy error’
i=1 j=1



From Likelihood to Cross Entropy Loss

Logistic Regression Likelihood: L(ﬁo,ﬁl,. Bl ¥} Hp ;)Y ;)"
Log Likelihood: Z yilog p(x;)+(1—yi)log (1—p(;))
1 N
Log Loss: J(B) = —j\—,z yilog p( z;) + (1 = y;)log (1 — p)(z;))
=1
N V]
Final Cost Function: J = Z Zyz Jlog yfj) -- “cross entropy error’

21_}1



From Likelihood to Cross Entropy Loss

Logistic Regression Likelihood: L(8, 51, ..., Be| X, Y) = Hp(fvi)yi(l — pz;))
nY

Log Likelihood: Z yilog p(x;)+(1—yi)log (1—p(;))
Log Loss: (5 Z yilog p(z;) + (1 — y;)log (1 — p)(z;))

N \/
Cross-Entropy Cost: TZ 2_: yilog p(z (a “multiclass” log loss)

V is classes

N |
Final Cost Function: J =— Z Zyi;]:log j; : - "cross entropy error”

1
N 4



From Likelihood to Cross Entropy Loss

loss = torch.mean(-torch.sum(y*torch.log(y pred))

Logistic Regression Likelihood:  L(Bo, 81, -.., Bl X, Y) = | [ p(x:)¥(1 — p(z:))' ¥
N =1

Log Likelihood: ((p) Z yilog p(i)+(1—y;)log (1—p(z;))

1 N
Log Loss: J(8) === D_ vilog wz)log (1—p)(x))

i=1
Cross-Entropy Cost: =-% Z Z yilog p(z; ;) (a “r.nulticlass” log loss)
=1 j=1 Vis classes
1 N |V|

Final Cost Function: J = - > "y;;log g;; - "cross entropy error

i=1 j=1



How to train in torch

loss = torch.mean(-torch.sum(y*torch.log(y pred))

/ ePo+B17;

Yi;= PY,=1|X;=x) =

1 + 6150‘*‘513%'

 1teBo

N V]
. . ]- 7\ A ] ]
Final Cost Function: J = N E y; ;log y; ; -- "cross entropy error

i=1 j=1



How to train in torch

loss = torch.mean(-torch.sum(y*torch.log(y pred))

/ ePo+B17;

Ui = PYi=1|X; = z) =

1 + 8150‘*‘513%'

1—|—e—5w

N |V

v 22

=—= yilog ( )

N e £ 1+ePe
_— ‘7_

1N V]

Final Cost Function: J = szyz}‘log j; - - "cross entropy error

i=1 j=1



How to train in torch

loss

= torch.mean(-torch.sum(y*torch.log(y pred))




How to train in torch

loss = torch.mean(-torch.sum(y*torch.log(y pred))
sgd = torch.optim.SGD(model.parameters(), lr=learning rate)

V|
> "y;:log §;; - "cross entropy error”
i=1 j=1

N
1

Final Cost Function: J :_N



How to train in torch

loss = torch.mean(-torch.sum(y*torch.log(y pred))
sgd = torch.optim.SGD(model.parameters(), lr=learning rate)

To Optimize Betas (all weights/parameters within the neural net):

Stochastic Gradient Descent (SGD)
-- optimize over one sample each iteration

Mini-Batch SDG:
--optimize over b samples each iteration

. - 1 L N ,,
Final Cost Function: J = 7;; y; :log §; ; -- "cross entropy error



Distributing Data

>
‘<

parameters

N-batch_size

RN A

—A— —A— —A— —A— —A— —A— —A— —A—




D iStri b Uti n g Data update params of each node and repeat
X

=

O D
}—P (&)
batch_size-1 { L batch0 |
g N
{ i | 6batch1
A )
g N
{ } 8 )
g N
{ } L ) Combine
} t ) parameters
{ 8 )
g N
{ } 8 )
g N
{ } 8 )
g N
N-batch_size { }
~ Y

N



X can be multiple features

Often we want to make a classification based on multiple features:

e Number of capital letters

surrounding: integer |
e Begins with capital letter: {0, 1} -
e Preceded by “the”? {0, 1}




Logistic Regression is still "linear modeling”

Y-axisis Y (i.e. 1 or 0) r

multiple Xs, let’s get rid
of y-axis. Instead, shgu
decision point.




Logistic Regression is still "linear modeling”

Y-axisis Y (i.e. 1 or 0) r
To make room for ‘

multiple Xs, let’s get rid
of y-axis. Instead, shgu
decision point.

L L ®

y
y

0

1 feature 2 features



Logistic Regression is still "linear modeling”

o




Logistic Regression is still "linear modeling”

e Because we're still learning a linear "hyperplane”




X can be multiple features

We're learning a linear (i.e. flat)
separating hyperplane, but fitting
it to a logit outcome.

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)



Logistic Regression

What if Y. € {0, 1}7? (i.e. we want “classification”)

l " *

=pi(8) =PV, =1 X=1z) =

logit(p;) = log b = Bo + > 185z
1 — p; j:f
We're still learning a linear
separating hyperplane, but
fitting it to a logit outcome.

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)



Uses of Regressions

1.

Testing the relationship between variables given other

variables. 5 is an “effect size” -- a score for the magnitude
of the relationship; can be tested for significance.

Building a predictive model that generalizes to new data.
Y is an estimate value of Y given X.



Uses of Regressions

1. Testing the relationship between variables given other
variables. 5 is an “effect size” -- a score for the magnitude
of the relationship; can be tested for significance.

2. Building a predictive model that generalizes to new data.
Y is an estimate value of Y given X.

X, X, X, X, X, X A

X7 X8 X9 XlO Xll X12 Y

Xs X, X v X

Task: Determine a function, f(or parameters to a function) such that fx)= v



Uses of Regressions

1.

Testing the relationship between variables given other
variables. 5 is an “effect size” -- a score for the magnitude
of the relationship; can be tested for significance.

Building a predictive model that generalizes to new data.
Y is an estimate value of Y given X.

However, when |features| close to number of observatations
then the model might “overfit”.

-> Regularized linear regression (a ML technique)
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e (Multiple) Logistic Regression
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e Linear Regression

e Pearson Product-Moment Correlation
e Multiple Linear Regression

e (Multiple) Logistic Regression

e Ridge Regularized Linear/Logistic Regression



Supervised Statistical Learning

Task: Determine a function, f(or parameters to a function) such that fx)= v



Supervised Learning

1 2 3 4 5 6
X7 X8 X9 X10 X11 X12
X13 X14 X15 Xm

Training and test set

Estimate y = f(x) on X)Y.
Hope thatthe same f(x)
also works on unseen X', Y’

J. Leskovec, A. Rajaraman, J. Uliman: Mining of Massive Datasets, http://www.mmds.org

Task: Determine a function, f(or parameters to a function) such that 1) =%



Logistic Regression - Regularization
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Logistic Regression - Regularization

X = Y
05 0 06 1 0 025 1
0 05 03 0 0 0 1
0 0 1 1 1 0.5 0
0 0 0 0 1 1 0
025 1 125 1 01 2 1

1.2 +|-63%x, + (1797, +|71%, +|18%, +|-59%. +| 19"k, 3 logit(Y)



Logistic Regression - Regularization

X = Y
0.5 0 0.6 1 0 0.25 1
0 0.5 OW 0 1
0 0 “overfitting” 05 0
0 0 0 1 1 0
€025 1 1.25 1 0.1 2 1

1.2 +|-63%x, + (1797, +|71%, +|18%, +|-59%. +| 19"k, 3 logit(Y)


https://colab.research.google.com/drive/1Q4iKFUUUL4fgDDUhs29s9I-7QFyXp0Wy?authuser=1#scrollTo=cfRcWRYRYiQd

Overfitting (1-d example)

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)




Overfitting (1-d example)

Degree 1 Degree 4
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02)
— Model — Model
— True function — True function
e®e Samples e®e Samples




Overfitting (1-d example)

Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.47e+08)
— Model — Model — Model
— True function — True function — True function
e®e Samples e®g Samples e®g¢ Samples




Overfitting (multidimenstional example)

X = Y
0.5 0 0.6 1 0 0.25 1
0 0.5 OW 0 1
0 0 “overfitting” 05 0
0 0 0 1 1 0
0.25 1 1.25 1 0.1 2 1

1.2 +|-63%x, + (1797, +|71%, +|18%, +|-59%. +| 19"k, 3 logit(Y)



Overfitting (multidimenstional example)

1.2 +|-63*, + |17

“overfitting”: generally
due to trying to fit too

) 0

many features given the
number of observations. 0
p 2 1

S+ 71%, +|18%%, +|-59% . +| 19"k, S logit(Y)



Overfitting (multidimenstional example)

0 0 predictors?
0 0

—_ O O -



Overfitting (multidimenstional example)

0.5 0
0 0.5
0 0
0 0
0.25 1

What if only 2
predictors?
A: better fit

—_ O O -

= logit(Y)



Regularization: stepwise feature selection

(bad) solution to overfit problem

Use less features based on Forward Stepwise Selection:

e start with current_model just has the intercept (mean)
remaining_predictors = all_predictors
for 1 in range(k):
#find best p to add to current model:
for p in remaining prepdictors
refit current model with p
#add best p, based on RSSp to current_model
#remove p from remaining predictors



Regularization: shrinkage

new weight

10

10 \
08 | 08
06 | _‘g 0.6
04 % 04
02} 0.2
%0 02 04 06 038 10 %95 02 04 06 08 10
original weight original weight
No selection (weight=beta) forward stepwise

Why just keep or discard features?



Regularization: L2 (Ridge) Penalized Loss

10

ldea: Impose a penalty on size of weights: o

Ordinary least squares objective: £ 05
N m S

3= argmain dZ(g, — Z T ,-J-‘\.-j‘)-)‘z} 2 04

=1 i=1 02}

0.0 L L : L
0.0 0.2 04 0.6 0.8 10

original weight




Regularization: L2 (Ridge) Penalized Loss

Idea: Impose a penalty on size of weights: |

Ordinary least squares objective:
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Regularization: L2 (Ridge) Penalized Loss

Idea: Impose a penalty on size of weights: |

Ordinary least squares objective:

m

8 = ar gmin 4 Z(J — Z }

j=1

new weight

Ridge regression: R T T T R

. original weight
N g g

@gridge _ argnrim-{Z( Z zij{3;) o+ \Z

i=1 j=1

I
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Regularization: L2 (Ridge) Penalized Loss

ldea: Impose a penalty on size of weights:

Ordinary least squares objective:

m

new weight

In Matrix Form:

I: m x m identity matrix

f)) ridge __

(XTX + M)t X1y

0.6
original weight

3—mqmzm Z(J —Z }
j=1
Ridge regression' L e T
379¢ = qr gmin, j{z (yi — Z + /\Z ff}
i=1 i=l \
RSS(A\) = (y — X8)  (y — X3) + A3 3

SElE




Common Goal: Generalize to new data

Does the
model hold up?

Original Data New Data?




Common Goal: Generalize to new data

Does the
model hold up?

Training Data

Testing Data




Training
Data

ML: GOAL

Does the
model hold up?

Develop-
ment
Data

Testing Data

Set training
hyperparameters




N-Fold Cross Validation

Goal: Decent estimate of model accuracy

All data “

lter 1 ‘ train ‘ dev ‘ test ‘

lter 2 ‘ train ‘ dev “ test “ train ‘

lter 3 ‘ train “ dev “ test | train ‘




Useful Plots: Prediction

Learning Curve: for plotting error from gradient descent.

A

for a model with
convex optimization
(i.e. linear regression)

cost

# iterations
ROC Plot: for visualizing true-positive to false-positive rates (used for AUC metric)

Some extension of Receiver operating characteristic to multi-class

1.0+

A

o8f J_[i

(=)
o

True Positive Rate
2]

o
'S
1

— micro-average ROC curve (area = 0.73)
021 ~” | — ROC curve of class 0 (area = 0.91)
. — ROC curve of class 1 (area = 0.60)
— ROC curve of class 2 (area = 0.79)

0.0 0.2 0.4 0.6 0.8
False Positive Rate

| (PLOT_ROC)

for a model with
non-convex
optimization (i.e.
most deep learning)

True Positive Rate (prob. of detection)

1.0

0.8

0.6

0.4

0.2

0.8.

el

cost

Mini-batch#  (Dabura, 2017)

[ Facebook language /
prediction vs. medical records /ax threshold
3l
/
/
/

/ Chance performance

/ Screening surveys vs.
medical records
A1 (Noyes et al., 2011)

¥ Strict threshold

| ‘ __(Eichstaedt et al., 2018)

False Positive Rate (prob. of false alarm)


https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3
https://scikit-learn.org/0.15/auto_examples/plot_roc.html

From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

Inputs  Weights Net input Activation
function function

output




Common Activation Functions

1

Zz=wX i //~

/ o

-6 -4 -2 0 2 4 6

Logistic: o(z)=1/(1+ €%) | 7

Hyperbolic tangent: tanh(z) = 20(2z)- 1 = (¢**- 1) /(¢ + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)




From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

Inputs  Weights Net input Activation
function function

output




From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

Inputs  Weights Net input Activation
function function

output

Batch Normalization



Batch Normalization

Input: Values of 2 over a mini-batch: B = {x1._ 1 };
Parameters to be learned: v,
Output: {y; = BN, g(z:)}

»
UB — Z XTi // mini-batch mean
i=1
1 m
g - Z(:Ez — 1u5)? // mini-batch variance
el
T — B // normalize

Yi < vZ; + F = BN, g(z;) // scale and shift




Batch Normalization

/ (but within the current batch of
L\

This is just standardizing!

observations)

Input: Values of z over a mini-batch: B = {x1._,}; !

Parameters to be learned: v,
Output: {y; = BN, g(z:)}

»
UB — Z XTi // mini-batch mean
i=1
1 m
g - Z(azz — 1u5)? // mini-batch variance
el
T — B // normalize

0, 5y B = BN, gl // scale and shift




Batch Normalization

A

This is just standardizing!
(but within the current batch of
observations)

Input: Values of z over a mini-batch: B = {x1._,}; !

Parameters to be learned: v,

Output: {y; = BN, g(z;)} Why?
. e Emopirically, it works!
UB 1 Z T; // mini-batch mean e Conceptually, generally good
™=l for weight optimization to

keep data within a reasonable

range (dividing by sigma) and

R By = s ; ) such that posi;clive weightz

Ly & —F—— hormalize move it up and negative down

AR (centering).

e Small effect: When done over
mini-batches, adds
regularization due to
differences between batches.

1 & . .
0123 — - ;(xz — /,L5)2 // mini-batch variance

Yi < vZ; + F = BN, g(z;) // scale and shift

(loffe and Szegedy, 2015)



Useful Plots: For distributions

Histogram + KDE

Boxplot

Violin plot

(Lewinson, 2019)



https://towardsdatascience.com/violin-plots-explained-fb1d115e023d

Useful Plots: Correlation

Scatter Plot: for two variables expected to be associated (with optional regression line)

[ : < & 0:. ®
L 4
® .. @ o x‘.c
L @
© ‘0' L = .o ’ o E o ...;0
- o~. °o..~.‘ - .“.03 s, -h ob
3 A ° % e °
s B g . :
.w L o (A ‘ . ° o* ¢
. ° B ® © ® "s o © %
! 0‘ o ° ’ ® o 0: . Ch .
. = null / no relationship strong, non-linear ( art|0)
strong, positive, linear moderate, negative, linear

Correlation Matrix: for comparing associations between many variables (use Bonferroni correction if hyp testing)

0.2
FriendSize Intelligence Quotient Income Sat W/ Life Depression ' ! ' j ‘
Openness
F1 0.03 0.04 0.12 0.02 -0.1 0.1
Conscientiousness
F2) 0.04 -0.26 -0.19 -0.09 0.11
Extraversion 0.0
F3| -0.07 -0.13 0.02 -0.02 -0.02
Agreablen
Fa -0.03 0.27 -0.08 -0.12 011 greableness -0.1
F5 -0.01 0.23 0.29 0.07 021 Neuroticism
\w‘ 7 §‘ 7 ‘Z" g, _02
Fig 3. Individual factor correlations with outcomes. Note how F4 which captures the use of swear words negatively correlates with o QQI N rd & N
Satisfaction with Life (SWL). 5’ I3 So °¢ G’U 0)5
IS g v o3
https://doi.org/10.1371/journal.pone.0201703.g003 O S s H
g . K (Liu et al., 2016)



http://wwbp.org/papers/persimages16icwsm.pdf

Useful Plots: Any Values

. Twitter and All Predictors
Bar Plot: To visually compare values o —

under different selections/conditions. Al Predictors (except Twitter) =8
Income and Education [ |
. . Smoking e
40 NlCCSt FTL{lt Diabetes (e
_';._35 Hypertension =
,-\8 30- Obesity ]
%25" = %Black =T
< 20
5 %Female s |
< 15 .
§ 10 %Married ——
e 5 %Hispanic —— {E | | “ | | 2@18}
0 PRI ———————— (SCience SEDiment) 00 05 10 15 20 25 30 35 a0 45
berry
Pearson r
Line Plot: When one variable has a natural ordering (e.g. time) 08 ‘ -
0.7 i\’\‘\;
pei
Deaths from COVID. s —
1 S o6l = -
deaths US Overal ™\ Tz B
Sosl ,
per ‘\r S
100k \\M ki b \\
| 03 2 3 2
i Time period

(e F1 eeF2 eeF oo F:1 eeFs

vaccine in full rollout  delta variant . =
Fig 6. Test re-test validity of our learned factors.

(first 5% vaccinated) becomes majority https/doi.org/10.1374/journal.pone.0201703.9006
(plot source: NYT U.S. Coronavirus Data) ~Jan 15, 2021 ~July 1, 2021




The Transformer: NN Sequence Modeling

-- assigning a probability to a sequences of words.



The Transformer: NN Sequence Modeling

-- assigning a probability to a sequences of elements.

Common Formulation: Model P(e | e, e, ...,e_ )
:the probability of a next element given history



Language Modeling

-- assigning a probability to a sequences of words.

)

Common Formulation: Model P(w | w ,w,, ..., w__

:the probability of a next word given history



Language Modeling

-- assigning a probability to a sequences of words.

)

Common Formulation: Model P(w | w ,w,, ..., w__

:the probability of a next word given history

Task Formulation:
Input: the previous words, w , w, ..., w_
Output: a probability for the next word, w_

P(w | w ="Im’, w = feeling’, w3='very') = ?7?

4



Language Modeling

-- assigning a probability to a sequences of words.

)

Common Formulation: Model P(w | w ,w,, ..., w__

:the probability of a next word given history

Task Formulation:
Input: the previous words, w , w, ..., w_
Output: a probability for the next word, w_

P(w4='rhapsodic' | w ="Im’, w = feeling’, w3='very') = ?7?



Language Modeling

-- assigning a probability to a sequences of words.

)

Common Formulation: Model P(w | w ,w,, ..., w__

:the probability of a next word given history

Task Formulation:
Input: the previous words, w , w, ..., w_
Output: a probability for the next word, w_

P(w4='rhapsodic' | w ="Im’, w = feeling’, w3='very') =
0.0012



Language Modeling

-- assigning a probability to a sequences of words.

)

Common Formulation: Model P(w | w ,w,, ..., w__

:the probability of a next word given history

Task Formulation:

"maximum likelihood estimate"

Input: the previous words, w , W, e, W Simple way to estimate, but
1 = S mostly only works ok for short

Output: a probability for the next word, w IS

count('Im feeling very good’)
count('Im feeling very *')

P('good' | 'Im’, 'feeling’, 'very') =



Language Modeling

-- assigning a probability to a sequences of words.

)

Common Formulation: Model P(w | w ,w,, ..., w__

:the probability of a next word given history

Task Formulation:

Input: the previous words, w , w, ..., w_
Output: a probability for the next word, w_
(i.e. a "probability distribution")
P(w_|'Im', feeling', 'very’) =

'‘good' 'clever' 'stressed' 'a' 'rhapsodic' 'blue'



Language Modeling

-- assigning a probability to a sequences of words.

Common Formulation: Model P(w | w , w,, ..., w_ )
:the probability of a next word given history
Task Formulation: 0016
Input: the previous words, w , Woon
Output: a probability for the nex._ .
(i.e. a "probability distribution") .
0.002 i I

P(w_|'Im', feeling', 'very’) =

'‘good' 'clever' 'stressed' 'a' 'rhapsodic' 'blue'



Language Modeling

Applications:
Auto-complete: What word is next?

Machine Translation: Which translation is most likely?
Spell Correction: Which word is most likely given error?

Speech Recognition: What did they just say?

“‘eyes aw of an”
(example from Jurafsky, 2017)




Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.
. 1948

XLNet

Language Models I
RoBERTA

Vector Semantics
LMs + Vectors

~logarithmic scale
GPT3.5



Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.
. 1948

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

XLNet

Language Models I
RoBERTA

Vector Semantics
LMs + Vectors

~logarithmic scale

GPT3.5



Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948

el Shannon: A Mathematical Theory of Communication (first digital language model)
K Jelinek et al. (IBM): Language Models for Speech Recognition

19

Osgood: The
Measurement 2003
of Meaning
Switzer: Vector Deervyater:
Indexing by Latent
Space Models . :
Semantic Analysis
(LSA)
Bengio:
B Language Models Neural-net
B Vector Semantics
based

m LMs + Vectors

~logarithmic scale

embeddings

Brown et al.: Class-based ngram models of

natural language

Blei et al.: [LDA Topic Modeling]
2010

Mikolov: word2vec
ELMO 7018

Collobert and
Weston: A unified
architecture for
natural language BERT
processing: Deep

neural networks...

| XINet
RoBERTA
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Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

. 1948

Shannon: A Mathematical Theory of Communication (first digital language model)

1980

XLNet

Language Models I
RoBERTA

Vector Semantics
LMs + Vectors

~logarithmic scale
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Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948 , .
‘. Shannon: A Mathematical Theory of Communication (first digital language model)

1980

Osgood: The
Measurement
of Meaning

XLNet
RoBERTA

Language Models

_ I
Vector Semantics
m LMs + Vectors

~logarithmic scale
GPT3.5



Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948 , .
‘. Shannon: A Mathematical Theory of Communication (first digital language model)

not good
Osgood: The to by dislike
Measurement that  now ‘ AL
of Meanin i
f g a i you
than - :
with =
very good incredibly good
amazing fantastic
B Language Models o , wonderful
: nice
B Vector Semantics

m LMs + Vectors
~logarithmic scale Li et al. ,2015; Jurafsky et al., 2019
( y ) GPT3.5



Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948 , .
‘. Shannon: A Mathematical Theory of Communication (first digital language model)

not good
Osgood: The to by ‘. dislike
Measurement that  now ‘ mlenEL
of Meanin i
f g a L i you
than - :
vith e 10 18
3 2 10
9 : .
very good incredibly good
amazing fantastic
B Language Models o , wonderful
: nice
B Vector Semantics

m LMs + Vectors
~logarithmic scale Li et al. ,2015; Jurafsky et al., 2019
( y ) GPT3.5



Timeline:

Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.
1948

‘. ./.L<annon: A Mathematical Theory of Communication (first digital language model)

Osgood: The
Measurement
of Meaning

Switzer: Vector
Space Models

m LMs + Vectors

Language Models
Vector Semantics

1980

2010

__ XINet
RoBERTA

~logarithmic scale
GPT3.5



Word Vectors

To embed: convert a token (or sequence) to a vector that represents meaning.

embed
beam —




Word Vectors

To embed: convert a token (or sequence) to a vector that represents meaning.

"one-hot encoding”

C 0 D
embed 0
beam == 1
L 0




Word Vectors

To embed: convert a token (or sequence) to a vector that represents meaning.

"one-hot encoding”
Prefer dense vectors: why?

bed e Less parameters (weights) for
embe . .
beam 0 machine learning model.

> May generalize better implicitly.
e May capture synonyms

-
[




Word Vectors

'‘beam’ — : ;
a signal transmitted along a narrow path: guides

by airplane pilots in darkness or bad weather”
beam-2 long thick piece of wood or metal or concrete, etc.,

/ - used in construction”™
eanm-J

beam-4 “a group of nearly parallel lines of electromagnetic

: radiation™ B
beam-6 ray-6

'electron beam'

electron_beam-1

The nail hit the beam behind the wall.

\ ) \ )
1 1




Word Vectors

To embed: convert a token (or sequence) to a vector that represents meaning.
Wittgenstein, 1945: “The meaning of a word is its use in the language”

Distributional hypothesis -- A word’s meaning is defined by all the different
contexts it appears in (i.e. how it is “distributed” in natural language).

Firth, 1957: “You shall know a word by the company it keeps”

The nail hit the beam behind the wall.

\ ) \ )
1 1
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Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948 , .
el Shannon: A Mathematical Theory of Communication (first digital language model)
Osgood: The
Measurement
of Meaning

: Deerwater: 2010
Switzer: Vector .
Indexing by Latent
Space Models . :
Semantic Analysis
(LSA)

__ XINet
RoBERTA

Language Models
Vector Semantics
m LMs + Vectors

~logarithmic scale
GPT3.5



Word Vectors

Person A

How are you? [ feel fine —even great!

What is going on? Earlier, I played the game
Yahtzee with my partner. 1
could not get that die to roll
a 1! Now I’'m lying on my
bed for a rest.

(Kjell, Kjell, and Schwartz, 2023)

Person B

My life is a great mess! I'm
having a very hard time being

happy.

My business partner was lying
to me. He was trying to game
the system and played me. |
think I am going to die —he left
and now I have to pay the rest
of his fine.



Objective

0.53

embed 1.5
great —p 3.21
-2.3

.76




Objective

g reat

embed

0.53
1.5
3.21
-2.3
.76

[N

great.a.l (relatively large in size or number
or extent; larger than others of its kind)

great.a.2, outstanding (of major significance
or importance)

great.a.3 (remarkable or out of the ordinary
in degree or magnitude or effect)

bang-up, bully, corking, cracking, dandy,
great.a.4, groovy, keen, neat, nifty, not bad,
peachy, slap-up, swell, smashing, old (very
good)

capital, great.a.5, majuscule (uppercase)

big, enceinte, expectant, gravid, great.a.6,
large, heavy, with child (in an advanced
stage of pregnancy)



Objective
great.a.l (relatively large in size or number
or extent; larger than others of its kind)

great.a.2, outstanding (of major significance

/ or importance)
great.a.3 (remarkable or out of the ordinary
g ~ in degree or magnitude or effect)
|
\

0.53 bang-up, bully, corking, cracking, dandy,
embed 1.5 great.a.4, groovy, keen, neat, nifty, not bad,
great —> 3.21 peachy, slap-up, swell, smashing, old (very
.76 _ _
9 y capital, great.a.5, majuscule (uppercase)

big, enceinte, expectant, gravid, great.a.6,
large, heavy, with child (in an advanced
stage of pregnancy)

great.n.1 (a person who has achieved
distinction and honor in some field)
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Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

= 1948 , e
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K 19 Jelinek et al. (IBM): Language Models for Speech Recognition
Osgood: The Brown et al.: Class-based ngram models of
Measure.ment 2003 natural language
of Meaning http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html
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Semantic Analysis
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GPT3.5


http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html
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Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948

Osgood: The
Measurement
of Meaning
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Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948 , .
.. Shannon: A Mathematical Theory of Communication (first digital language model)
K 19 Jelinek et al. (IBM): Language Models for Speech Recognition
Osgood: The Brown et al.: Class-based ngram models of
Measurement 2003 natural language
of Meaning
Blei et al.: [LDA Topic Modeling]
: _ Deerwater: 2010
Switzer: Vector Indexing by Latent Mikolov: word2vec
Space Models S  Analvsi
Leslzant/c nalysis 2018
(L5A) : Collobert and
Bengio: .
B Language Models Neural-net Weston: A unified ___ XLNet
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2010

Mikolov: word2vec

2018

Collobert and

Weston: A unified XLNet

_ P
architecture for RoBERTA
natural language

processing: Deep
neural networks... GPT3




Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948 , .
.. Shannon: A Mathematical Theory of Communication (first digital language model)
K 19 Jelinek et al. (IBM): Language Models for Speech Recognition
Osgood: The Brown et al.: Class-based ngram models of
Measurement 2003 natural language
of Meaning
Blei et al.: [LDA Topic Modeling]
: _ Deerwater: 2010
Switzer: Vector Indexing by Latent Mikolov: word2vec
Space Models S  Analvsi
Leslzant/c nalysis 2018
(L5A) : Collobert and
Bengio: .
B Language Models Neural-net Weston: A unified ___ XLNet
M Vector Semantics based architecture for RoBERTA

. natural language
embeddings processing: Deep
~logarithmic scale

neural networks... GPT3

m LMs + Vectors



Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948 , .
e Shannon: A Mathematical Theory of Communication (first digital language model)
K 19 Jelinek et al. (IBM): Language Models for Speech Recognition
Osgood: The Brown et al.: Class-based ngram models of
Measurement 2003 natural language
of Meaning
Blei et al.: [LDA Topic Modeling]

Deerwater: 2010
Indexing by Latent

Semantic Analysis

Switzer: Vector
Space Models

Mikolov: word2vec
ELMO 7018

L
(LSA) Bengio: Collobert and
M Language Models Neural-.net Weston: A unified . XLNet
B Vector Semantics based architecture for RoBERTA

. natural language
embeddings , ,cessing: Deep
~logarithmic scale

neural networks... GPT3

m LMs + Vectors



Recurrent Neural Network

(s J( oo )t ) ol |
N A .
)

(. Janet ) ( will )(C_ _back ) C( the ) ( bill )




Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948 , .
e Shannon: A Mathematical Theory of Communication (first digital language model)
K 19 Jelinek et al. (IBM): Language Models for Speech Recognition
Osgood: The Brown et al.: Class-based ngram models of
Measurement 2003 natural language
of Meaning
Blei et al.: [LDA Topic Modeling]

Deerwater: 2010
Indexing by Latent

Semantic Analysis

Switzer: Vector
Space Models

Mikolov: word2vec
ELMO 7018

L
(LSA) Bengio: Collobert and
M Language Models Neural-.net Weston: A unified . XLNet
B Vector Semantics based architecture for RoBERTA

. natural language
embeddings , ,cessing: Deep
~logarithmic scale

neural networks... GPT3

m LMs + Vectors



Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948 , .
e Shannon: A Mathematical Theory of Communication (first digital language model)
K 19 Jelinek et al. (IBM): Language Models for Speech Recognition
Osgood: The Brown et al.: Class-based ngram models of
Measurement 2003 natural language
of Meaning
Blei et al.: [LDA Topic Modeling]

Deerwater: 2010
Indexing by Latent

Semantic Analysis

Switzer: Vector
Space Models

Mikolov: word2vec
ELMO 7018

L
(LSA) Bengio: Collobert and pT
M Language Models Neural-.net Weston: A unified . XLNet
B Vector Semantics based architecture for RoBERTA

. natural language BERT
embeddings , ocessing: Deep
~logarithmic scale

neural networks... GPT3

m LMs + Vectors



The Transformer: Motivation

Challenges to sequential representation learning

e Capture long-distance dependencies
e Preserving sequential distances / periodicity
e Capture multiple relationships

e Easy to parallelize -- don’t need sequential processing.



The Transformer: Attention-only Models

Challenge: The ball was kicked by kayla.

e |ong distance dependency when translating:
Vo) Yo Ve o, e

r 1 1
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1
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A A A
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(X <40~ V) Ja) Xe2)

Kayla kicked the ball.




The Transformer: Attention-only Models

Challenge: The ball was kicked by kayla.

e |ong distance dependency when translating:

Y (o) Y1) Y(2) Y(3)

1

(4)

Kayla kicked the ball.



Transformer Language Models: Uses multiple layers of a transformer

layer k:
(used for language modeling)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with
context)

layer 0:
(input: word-type embeddings)

sentence (sequence) input:

(Kjell, Kjell, and Schwartz, 2023)



auto-encoder:
e Connections go both directions.
e Task is predict word in middle:
p(wil ..., pwi-2, wi-1, wi+1, wi+2...)
e Better for:
o embeddings
o fine-tuning (transfer learning)
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e Connections go both directions.
e Task is predict word in middle:
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e Better for:
o embeddings
o fine-tuning (transfer learning)

auto-regressor (generator):

e Connections go forward only

e Task is predict word next word:
p(wil| wi-1, wi-2, ...)

e Better for:
O generating text
o zero-shot learning




auto-encoder:
e Connections go both directions.
e Task is predict word in middle:
p(wil ..., pwi-2, wi-1, wi+1, wi+2...)
e Better for:
o embeddings
o fine-tuning (transfer learning)

auto-regressor (generator):
e Connections go forward only
e Task is predict word next word:
p(wil| wi-1, wi-2, ...)
e Better for:
O generating text
o zero-shot learning




Self-Attention

The Transformer's Heart




The Transformer's Heart: Self-Attention
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The Transformer's Heart: Self-Attention

yi
T
Output
o
Attend to all other words in
, the sequence
b
» b b,

1.
T T T T
I'm feeling very  elated.



The Transformer's Heart: Self-Attention

yi
T " . .
Output A weighted f:omblnatlon of
other words' vectors.
oL
Y
b
hi‘l hl' hz’+1

| 4 4 4

I'm feeling very  elated.



The Transformer's Heart: Self-Attention




The Transformer's Heart: Self-Attention
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| ) P\ "

I'm feeling very  elated.



The Transformer's Heart: Self-Attention
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The Transformer's Heart: Self-Attention

?#9c1p(h-i, 5) = STh-i.

k'q




The Transformer's Heart: Self-Attention

scaling
parameter
Output ’l,f)dp (kygq) = (K'q)o
oL
Y




The Transformer's Heart: Self-Attention

'l.f)dp (k)Q) — (ktq g

Linear layer:
WTX

One set of weights for
each of for K, Q, and V



Self-Attention in PyTorch

I import nn.functional as f

I class SelfAttention(nn.Module):

def init_ (self, h_dim:int):
nn.Linear(h_dim, h _dim) #1 head

self.Q = Vap (kbq) = (Kq)o
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)

Linear layer:

v = self.V(hidden_states)
k = self.K(hidden_states)
g = self.Q(hidden_states)
attn_scores = torch.matmul(qg, k.T)
attn_probs = f.Softmax(attn_scores)

One set of weights
for each of for K,
Q, and V

context = torch.matmul(attn_probs, v)

|
|
|
|
I
I
|
|
|
|
def forward(hidden states:torch.Tensor): | wix
|
I
I
|
|
|
|
|
|
return context I



Self-Attention in PyTorch

I import nn.functional as f
I class SelfAttention(nn.Module):

def _init_ (self, h dim:int):
nn.Linear(h_dim, h_dim) #1 head

self.Q
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):

v = self.V(hidden_states)

k = self.K(hidden_states)

g = self.Q(hidden_states)

attn_scores = torch.matmul(qg, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context

"l.*"',’"dp (kq) = (Kq)o

Linear layer:
wix

One set of weights
for each of for K,
Q, and V



Self-Attention in PyTorch

I import nn.functional as f '
I class SelfAttention(nn.Module):

def forward(h
v = self.
k = self.

q = self. L) | @N of for K,

- a) Standard Neural Net
attn_prob (»)

attn:probs = self.dropout(aztn_probs)
context = torch.matmul(attn_probs, v)
return context



The Transformer: Beyond Self-Attention

Limitation (thus far): Can’t capture multiple types of dependencies between words.

| kicked the ball

Who Did what? To whom?

. .

| kicked the ball



The Transformer: Beyond Self-Attention

Limitation (thus far): Can’t capture multiple types of dependencies between words.

Solution: Multi-head attention

| kicked the ball

®@ OO0

To whom?

ball



The Transformer: Muli-headed Attention

----------------------------------

: Scaled Dot-Product

Attention e
Linear




The Transformer

iStage 1 Positional £~ L
: Encoding

Inputs



sequence index (t)

The Transformer
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The Transformer

iStage 1 Positional
Encoding

Inputs



The Transformer

Stage 1 Positiona
Encoding

1
Inputs



The Transformer

residuals enable
positional
information to be

e B

: | ! passed along
—{Add & Norm ] | _ ‘
Residualized Mult-Head 1 | : - . With residuals
Connections Sreron HHEs 41
Il 4t o _5
I e |
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The Transformer: Motivation

Challenges to sequential representation learning

Capture long-distance dependencies

Preserving sequential distances / periodicity

Capture multiple relationships

Easy to parallelize -- don’t need sequential processing.



The Transformer: Motivation

Challenges to sequential representation learning

e Capture long-distance dependencies
Self-attention treats far away words similar to those close.

e Preserving sequential distances / periodicity
Positional embeddings encode distances/periods.

e Capture multiple relationships
Multi-headed attention enables multiple compositions.

e Easy to parallelize -- don’t need sequential processing.
Entire layer can be computed at once. Is only matrix
multiplications + standardizing.



Transformer (as of 2017)

‘“WMT-2014" Data Set. BLEU scores:

EN-DE EN-FR
CI\\V/ I N(elgle) 24.6 39.9
ConvSeg2Seq 25.2 40.5
Transformer® 28.4 41.8




Transformers as of 2023

General Language Understanding Evaluations:

https://gluebenchmark.com/leaderboard

https://super.gluebenchmark.com/leaderboard/

ChatGPT “

ChatGPT is an artificial intelligence chatbot
developed by OpenAl and launched in
November 2022. It is built on top of OpenAl's
GPT-3.5 and GPT-4 families of large
language models and has been fine-tu...



https://gluebenchmark.com/leaderboard
https://super.gluebenchmark.com/leaderboard/

Transformers as of 2023

Machine
Translation

absolutamente
me gustaria ir
de excursion

AT

Soni, N., Matero, M.,
Balasubramanian, N., &
Schwartz, H. (2022, May).
Human Language Modeling. In
Findings of the Association for
Computational Linguistics: ACL
2022 (pp. 622-636).

L

Web Sentiment Document
Search Analysis Classification

arge Transformer Languaage Mode

Language

Assistant,
QA

(NLP System)

Microsoft

Research



Bert: Attention by Layers

https://colab.research.gooale.com/drive/1viOJ11hdujVifH857hvYKIdKPTD9Kid8

Layer: 2 § Attention: All
H "l 8 B

[CLS]

i
went

to

the
store

[SEP]
at
the
store
i ‘ i
bought ﬂ bought
fresh fresh
straw ; straw
#i#berries #i#tberries

[SEP] [SEP]

(Vig, 2019)


https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

BERT Performance: e.g. Question Answering

GLUE scores evolution over 2018-2019

B Single generic models == == 2018 Task-specific-SOTA == Human performance
90 f
85
80
75
70

BILSTM+ELMo GPT BERT BERT Big BigBird

https://rajpurkar.qithub.io/SQuAD-explorer/



https://rajpurkar.github.io/SQuAD-explorer/

BERT: Pre-training; Fine-tuning

[ W’y ") ‘ w3 wW’s
Embedding 7y % Y
to vocab + T
softmax
[ Classification Layer: Fully-connected layer + GELU + Norm
r 3 A r 3 r 3 3
01 02 03 04 05
3 A ' r A
(
Transformer encoder
12 or 24 layers
N
Embedding T T T t T
| w w2 W3 [MASK] Ws
W1 W2 W3 W4 Ws




BERT: Pre-training; Fine-tuning

Transformer encoder

12 or 24 layers

w1 w2 W3 [MASK] W5
[ | | [ |
W1 W2 W3 W4 Ws




BERT: Pre-training; Fine-tuning

Embeddin Novel classifier

to vocab

Softmax (e.g. sentiment classifier; stance detector...etc..)

[ )
Transformer encoder
12 or 24 layers
2 _J
Embedding T T T T T
[ W1 W2 ] W3 [MASK] ] Ws

W1 W2 W3 W4 Ws



The Transformer: Motivation

Challenges to sequential representation learning

e Capture long-distance dependencies
Self-attention treats far away words similar to those close.

® Preserving sequential distances / periodicity
Positional embeddings encode distances/periods.

e Capture multiple relationships
Multi-headed attention enables multiple compositions.

e Easy to parallelize -- don’t need sequential processing.
Entire layer can be computed at once. Is only matrix
multiplications + standardizing.



