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Deep Learning

Already Covered:

● Pytorch as a dataflow system of with a graph of tensors, operations, and 
building blocks

● Implementation of Linear Regression in PyTorch

● Minimizing error (concept of gradient descent)

● Parallelisms: Data Parallelism and Model Parallelism

(see topic (5) Neural Network Workflow Systems)
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Linear Regression and Gradient Descent

𝛽

loss

min

grad

(rasbt, http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

y = 𝛽0 +𝛽1x

y = mx + b

https://www.desmos.com/calculator/y8j7sejtuw
https://www.desmos.com/calculator/2usyk3ykts
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Linear Regression and Gradient Descent

loss = Σ (y_pred - y)2

(rasbt, http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

y_pred = 𝛽0 +𝛽1x

y_pred = mx + b

https://www.desmos.com/calculator/y8j7sejtuw
https://www.desmos.com/calculator/2usyk3ykts

https://www.desmos.com/calculator/y8j7sejtuw
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Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

Regression:

goal: estimate the function r

The expected value of Y, given 
that the random variable X is 
equal to some specific value, x.

Linear Regression



Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

Regression:

goal: estimate the function r

Linear Regression (univariate version):

goal: find 𝛽
0
, 𝛽

1
 such that 

Linear Regression



more precisely

Linear Regression

Simple Linear Regression



Linear Regression

Simple Linear Regression

expected variance

intercept slope error



Linear Regression: Estimating Params

Simple Linear Regression

How to estimate intercept (ꞵ0) and slope intercept (ꞵ1)?

Least Squares Estimate.  Find        and        which minimizes 
the residual sum of squares:

J(ꞵ) = ^         ^
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Covariance

Correlation (standardized covariance)

Pearson Product-Moment Correlation
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Covariance

Correlation

If one standardizes X and Y (i.e. subtract the mean and divide by the 
standard deviation) before running linear regression, then:
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Lin Reg Direct Estimates
(normal equations)

Covariance

Correlation

If one standardizes X and Y (i.e. subtract the mean and divide by the 
standard deviation) before running linear regression, then:
         = 0   and         = r    ---  i.e.        is the Pearson correlation!

Pearson Product-Moment Correlation



Useful Plots: Correlation

Scatter Plot: for two variables expected to be associated (with optional regression line)

Correlation Matrix: for comparing associations between many variables (use Bonferroni correction if hyp testing)

(Chartio)

(Liu et al., 2016)

http://wwbp.org/papers/persimages16icwsm.pdf
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Multiple Linear Regression

Simple Linear Regression

Estimated intercept and slope

Residual: 



Suppose we have multiple X that we’d like to fit to Y at once:

If we include and X
oi

 = 1 for all i (i.e. adding the intercept to X), then we can 
say:
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X is a matrix.
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Suppose we have multiple X that we’d like to fit to Y at once:

If we include and X
oi

 = 1 for all i, then we can say:

Or in vector notation across all i:

where       and      are vectors and

X is a matrix.

Estimating       :

 ←             Use Gradient Descent

Multiple Linear Regression
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Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function: 

“best fit” for neural networks: software designed to minimize rather than maximize
(typically, normalized by N, the number of examples.)

“best fit” : more efficient to maximize log likelihood :



From Likelihood to Cross Entropy Loss

loss = torch.mean(-torch.sum(y*torch.log(y_pred)) 

#where did this come from? 

Logistic Regression Likelihood:

Final Cost Function:  -- ”cross entropy error”
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loss  = torch.mean(-torch.sum(y*torch.log(y_pred)) 

#where did this come from? 

Logistic Regression Likelihood:

Log Likelihood:  

Log Loss: 

Cross-Entropy Cost: (a “multiclass” log loss)

How to train in torch

As a Graph?



loss  = torch.mean(-torch.sum(y*torch.log(y_pred)) 

sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)

Logistic Regression Likelihood:

Log Likelihood:  

Log Loss: 

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function:  -- ”cross entropy error”

How to train in torch



loss  = torch.mean(-torch.sum(y*torch.log(y_pred)) 

sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)

Logistic Regression Likelihood:

Log Likelihood:  

Log Loss: 

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function:  -- ”cross entropy error”

How to train in torch

To Optimize Betas (all weights/parameters within the neural net): 

Stochastic Gradient Descent (SGD)
-- optimize over one sample each iteration

Mini-Batch SDG:
--optimize over b samples each iteration



X y
0

batch_size-1

N-batch_size

N

𝛳batch0

𝛳batch1

Combine 
parameters

  Distributing Data



  Distributing Data
X y

0

batch_size-1

N-batch_size

N

𝛳batch0

𝛳batch1

Combine 
parameters

update params of each node and repeat



X can be multiple features

Often we want to make a classification based on multiple features:

● Number of capital letters 
surrounding: integer

● Begins with capital letter: {0, 1}
● Preceded by “the”?  {0, 1}



Y-axis is Y (i.e. 1 or 0)

To make room for 
multiple Xs, let’s get rid 
of y-axis. Instead, show 
decision point.

Logistic Regression is still "linear modeling"



Y-axis is Y (i.e. 1 or 0)

To make room for 
multiple Xs, let’s get rid 
of y-axis. Instead, show 
decision point.

Logistic Regression is still "linear modeling"

1 feature                 2 features
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separating hyperplane, but fitting 
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Logistic Regression is still "linear modeling"

● Because we're still learning a linear "hyperplane"

We’re learning a linear (i.e. flat) 
separating hyperplane, but fitting 
it to a logit outcome. 



X can be multiple features

We’re learning a linear (i.e. flat) 
separating hyperplane, but fitting 
it to a logit outcome. 

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)



What if Yi ∊ {0, 1}? (i.e. we want “classification”)

We’re still learning a linear 
separating hyperplane, but 
fitting it to a logit outcome. 

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)

Logistic Regression



1. Testing the relationship between variables given other 
variables. 𝛽 is an “effect size” -- a score for the magnitude 
of the relationship; can be tested for significance. 

2. Building a predictive model that generalizes to new data. 
Ŷ is an estimate value of Y given X.

Uses of Regressions
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1. Testing the relationship between variables given other 
variables. 𝛽 is an “effect size” -- a score for the magnitude 
of the relationship; can be tested for significance. 

2. Building a predictive model that generalizes to new data. 
Ŷ is an estimate value of Y given X.
However, when |features| close to number of observatations 
then the model might “overfit”.

-> Regularized linear regression (a ML technique)

Uses of Regressions
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Supervised Statistical Learning

Task:   Determine a function, f (or parameters to a function) such that f(X) = Y
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Task:   Determine a function, f (or parameters to a function) such that f(X) = Y

Supervised Learning
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“overfitting”

colab

Logistic Regression - Regularization

https://colab.research.google.com/drive/1Q4iKFUUUL4fgDDUhs29s9I-7QFyXp0Wy?authuser=1#scrollTo=cfRcWRYRYiQd


Overfitting (1-d example)
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(image credit: Scikit-learn; in practice data are rarely this clear)

Overfitting (1-d example)



Underfit Overfit

(image credit: Scikit-learn; in practice data are rarely this clear)

Overfitting (1-d example)



1

1

0

0

1

X    =     Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

 1.2  +  -63*x
1
  +  179*x

2
  +  71*x

3
   +   18*x

4
   +   -59*x

5
  +   19*x

6  
  = logit(Y) 

“overfitting”

Overfitting (multidimenstional example)



1

1

0

0

1

X    =     Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

 1.2  +  -63*x
1
  +  179*x

2
  +  71*x

3
   +   18*x

4
   +   -59*x

5
  +   19*x

6  
  = logit(Y) 

“overfitting”
“overfitting”: generally 
due to trying to fit too 
many features given the 
number of observations. 

Overfitting (multidimenstional example)



Logistic Regression - Regularization
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Logistic Regression - Regularization
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Overfitting (multidimenstional example)

 0  +     2*x
1
    +    2*x

2
                                                                          

 
  = logit(Y) 

What if only 2 
predictors?
   A: better fit



(bad) solution to overfit problem

Use less features based on Forward Stepwise Selection:

● start with current_model just has the intercept (mean)
remaining_predictors = all_predictors
  for i in range(k):

#find best p to add to current_model:

for p in remaining_prepdictors

refit current_model with p

       #add best p, based on RSS
p
 to current_model

#remove p from remaining predictors

Logistic Regression - Regularization
Regularization: stepwise feature selection



No selection (weight=beta) forward stepwise

Why just keep or discard features? 

Regularization: shrinkage
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Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:

In Matrix Form:

I: m x m identity matrix

Regularization: L2 (Ridge) Penalized Loss



Common Goal: Generalize to new data

Original Data New Data?

Does the 
model hold up?

Model



Common Goal: Generalize to new data

Training Data Testing Data

Model

Does the 
model hold up?



Training 
Data

Testing Data

Model

Develop-
ment
Data

Model

Set training 
hyperparameters

Does the 
model hold up?

ML: GOAL



Goal: Decent estimate of model accuracy

train testdev

All data

train testdev train

train testdev train

...

Iter 1

Iter 2

Iter 3

….

N-Fold Cross Validation



Useful Plots: Prediction

Learning Curve: for plotting error from gradient descent.

ROC Plot: for visualizing true-positive to false-positive rates (used for AUC metric)

for a model with 
convex optimization 
(i.e. linear regression)

for a model with 
non-convex 
optimization (i.e. 
most deep learning)

(Dabura, 2017)

(PLOT_ROC)
(Eichstaedt et al., 2018)

https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3
https://scikit-learn.org/0.15/auto_examples/plot_roc.html


Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

From Linear Models to Neural Nets



z = wX

Logistic:  𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Common Activation Functions



Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

From Linear Models to Neural Nets



Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

Z

Batch Normalization

From Linear Models to Neural Nets



(Ioffe and Szegedy, 2015)

Batch Normalization



(Ioffe and Szegedy, 2015)

This is just standardizing!
(but within the current batch of 
observations)

Batch Normalization



(Ioffe and Szegedy, 2015)

This is just standardizing!
(but within the current batch of 
observations)

Why? 
● Empirically, it works!
● Conceptually, generally good 

for weight optimization to 
keep data within a reasonable 
range (dividing by sigma) and 
such that positive weights 
move it up and negative down 
(centering). 

● Small effect: When done over 
mini-batches, adds 
regularization due to 
differences between batches.

Batch Normalization



Useful Plots: For distributions

(Lewinson, 2019)

https://towardsdatascience.com/violin-plots-explained-fb1d115e023d


Useful Plots: Correlation

Scatter Plot: for two variables expected to be associated (with optional regression line)

Correlation Matrix: for comparing associations between many variables (use Bonferroni correction if hyp testing)

(Chartio)

(Liu et al., 2016)

http://wwbp.org/papers/persimages16icwsm.pdf


Useful Plots: Any Values

Bar Plot: To visually compare values 
under different selections/conditions. 

Line Plot: When one variable has a natural ordering (e.g. time)

(Eichstaedt et al., 2018)(Science sEDiment)

deaths 
per 
100k

Pearson r



-- assigning a probability to a sequences of words. 

The Transformer: NN Sequence Modeling



-- assigning a probability to a sequences of elements. 

Common Formulation: Model P(en| e1, e2, …, en-1)
:the probability of a next element given history
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-- assigning a probability to a sequences of words. 

Common Formulation: Model P(wn| w1, w2, …, wn-1)
:the probability of a next word given history

Task Formulation:

  Input: the previous words, w1, w2, …, wn-1
  Output: a probability for the next word, wn
             

  P(w4           | w1='Im', w2='feeling', w3='very') = ??

Language Modeling



-- assigning a probability to a sequences of words. 

Common Formulation: Model P(wn| w1, w2, …, wn-1)
:the probability of a next word given history

Task Formulation:

  Input: the previous words, w1, w2, …, wn-1
  Output: a probability for the next word, wn
             

 P(w4='rhapsodic' | w1='Im', w2='feeling', w3='very') = ??

Language Modeling



-- assigning a probability to a sequences of words. 

Common Formulation: Model P(wn| w1, w2, …, wn-1)
:the probability of a next word given history

Task Formulation:

  Input: the previous words, w1, w2, …, wn-1
  Output: a probability for the next word, wn
             

 P(w4='rhapsodic' | w1='Im', w2='feeling', w3='very') = 
0.0012
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-- assigning a probability to a sequences of words. 

Common Formulation: Model P(wn| w1, w2, …, wn-1)
:the probability of a next word given history

Task Formulation:

  Input: the previous words, w1, w2, …, wn-1
  Output: a probability for the next word, wn
             

  P('good' | 'Im', 'feeling', 'very') = _count('Im feeling very good')_
   count('Im feeling very *') 

"maximum likelihood estimate" 
Simple way to estimate, but 
mostly only works ok for short 
phrases. 
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:the probability of a next word given history

Task Formulation:
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Common Formulation: Model P(wn| w1, w2, …, wn-1)
:the probability of a next word given history

Task Formulation:
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Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words

P(He ate the cake with the fork) = ?

Version 2: Compute P(w5| w1, w2, w3, w4) 
= P(wn| w1, w2, …, wn-1)

:probability of a next word given history
P(fork | He ate the cake with the) = ?

Applications:
● Auto-complete: What word is next? 
● Machine Translation: Which translation is most likely?
● Spell Correction: Which word is most likely given error?
● Speech Recognition: What did they just say?

“eyes aw of an” 
(example from Jurafsky, 2017)

Language Modeling
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These (or similar) are 
behind almost all 
state-of-the-art 
modern NLP systems
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embed

To embed: convert a token (or sequence) to a vector that represents meaning. 
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0
…
0
1
…
0

"one-hot encoding"

To embed: convert a token (or sequence) to a vector that represents meaning. 

Word Vectors



    beam embed
0
…
0
1
…
0

Prefer dense vectors; why? 

● Less parameters (weights) for 
machine learning model.

● May generalize better implicitly.
● May capture synonyms

"one-hot encoding"

To embed: convert a token (or sequence) to a vector that represents meaning. 

Word Vectors



The nail hit the beam behind the wall.

Word Vectors



To embed: convert a token (or sequence) to a vector that represents meaning. 

Wittgenstein, 1945: “The meaning of a word is its use in the language”

Distributional hypothesis -- A word’s meaning is defined by all the different 
contexts it appears in (i.e. how it is “distributed” in natural language). 

Firth, 1957: “You shall know a word by the company it keeps”

The nail hit the beam behind the wall.

Word Vectors



Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3.5

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The 
Measurement 
of Meaning

Switzer: Vector 
Space Models

1913 Markov: Probability that next letter would be vowel or consonant. 

Language Models
Vector Semantics
LMs + Vectors 



Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The 
Measurement 
of Meaning

Deerwater: 
Indexing by Latent 
Semantic Analysis 
(LSA)

Switzer: Vector 
Space Models

1913 Markov: Probability that next letter would be vowel or consonant. 

Language Models
Vector Semantics
LMs + Vectors 

GPT3.5



Person A Person B
How are you? I feel fine –even great!  My life is a great mess! I’m 

having a very hard time being 
happy.

What is going on? Earlier, I played the game 
Yahtzee with my partner. I  
could not get that die to roll 
a 1! Now I’m lying on my 
bed for a rest.

My business partner was lying 
to me. He was trying to game 
the system and played me. I 
think I am going to die –he left 
and now I have to pay the rest 
of his fine. 

(Kjell, Kjell, and Schwartz, 2023)

Word Vectors
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great.a.2, outstanding (of major significance 
or importance)

great.a.3 (remarkable or out of the ordinary 
in degree or magnitude or effect)

bang-up, bully, corking, cracking, dandy, 
great.a.4, groovy, keen, neat, nifty, not bad, 
peachy, slap-up, swell, smashing, old (very 
good) 

capital, great.a.5, majuscule (uppercase)

big, enceinte, expectant, gravid, great.a.6, 
large, heavy, with child (in an advanced 
stage of pregnancy)

great.n.1 (a person who has achieved 
distinction and honor in some field)

?

Objective
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Collobert and 
Weston: A unified 
architecture for 
natural language 
processing: Deep 
neural networks...
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word vectors

more neural networks
(capturing context)

Word Probabilities

Deep Learning 
for Language 

Modeling! 
(time for break)



Collobert and 
Weston: A unified 
architecture for 
natural language 
processing: Deep 
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The 
Measurement 
of Meaning

Deerwater: 
Indexing by Latent 
Semantic Analysis 
(LSA)

Brown et al.: Class-based ngram models of 
      natural language 

Switzer: Vector 
Space Models

Bengio: 
Neural-net
based 
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant. 

Language Models
Vector Semantics
LMs + Vectors 



Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

ELMO

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The 
Measurement 
of Meaning

Deerwater: 
Indexing by Latent 
Semantic Analysis 
(LSA)

Brown et al.: Class-based ngram models of 
      natural language 

Switzer: Vector 
Space Models

Bengio: 
Neural-net
based 
embeddings

Mikolov: word2vec

Collobert and 
Weston: A unified 
architecture for 
natural language 
processing: Deep 
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant. 

Language Models
Vector Semantics
LMs + Vectors 



Language modeling 
with an RNN

Recurrent Neural Network
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Challenges to sequential representation learning

● Capture long-distance dependencies

● Preserving sequential distances / periodicity

● Capture multiple relationships

● Easy to parallelize -- don’t need sequential processing.

The Transformer: Motivation



Challenge: 

● Long distance dependency when translating:

<go>                    y(0)                            y(1)                          y(2)                ….

      y(0)                            y(1)                          y(2)                  y(3)                         y(4)

Kayla kicked the ball. 

The ball was kicked by kayla.

The Transformer: Attention-only Models
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      y(0)                            y(1)                          y(2)                  y(3)                         y(4)
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My life is a great messsentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k: 
(used for language modeling)

Transformer Language Models:  Uses multiple layers of a transformer



auto-encoder: 
● Connections go both directions. 
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)
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● Better for:

○ generating text
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The Transformer's Heart: Self-Attention
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Self-Attention in PyTorch

import nn.functional as f
class SelfAttention(nn.Module):

def __init__(self, h_dim:int):
self.Q = nn.Linear(h_dim, h_dim) #1 head
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):
v = self.V(hidden_states)
k = self.K(hidden_states)
q = self.Q(hidden_states)
attn_scores = torch.matmul(q, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context
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Limitation (thus far): Can’t capture multiple types of dependencies between words. 

The Transformer: Beyond Self-Attention



Solution: Multi-head attention
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Limitation (thus far): Can’t capture multiple types of dependencies between words. 
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Residualized 
Connections

residuals enable 
positional 
information to be 
passed along
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Challenges to sequential representation learning

● Capture long-distance dependencies
Self-attention treats far away words similar to those close.

● Preserving sequential distances / periodicity
Positional embeddings encode distances/periods.

● Capture multiple relationships
Multi-headed attention enables multiple compositions. 

● Easy to parallelize -- don’t need sequential processing.
Entire layer can be computed at once. Is only matrix 
multiplications + standardizing. 

The Transformer: Motivation
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Transformer (as of 2017)

“WMT-2014” Data Set. BLEU scores: 



Transformers as of 2023

General Language Understanding Evaluations:

https://gluebenchmark.com/leaderboard

https://super.gluebenchmark.com/leaderboard/

https://gluebenchmark.com/leaderboard
https://super.gluebenchmark.com/leaderboard/


Large Transformer Language Model

Classifier

Assistant, 
QA 

Machine 
Translation

Web 
Search

Document 
Classification

Sentiment
Analysis …

absolutamente 
me gustaría ir 
de excursión

(NLP System)

Language

Soni, N., Matero, M., 
Balasubramanian, N., & 
Schwartz, H. (2022, May). 
Human Language Modeling. In 
Findings of the Association for 
Computational Linguistics: ACL 
2022 (pp. 622-636).

Transformers as of 2023



Bert: Attention by Layers
https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

(Vig, 2019)

https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8


BERT Performance: e.g. Question Answering

https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/


BERT: Pre-training; Fine-tuning

12 or 24 layers
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BERT: Pre-training; Fine-tuning

12 or 24 layers

Novel classifier
(e.g. sentiment classifier; stance detector...etc..)



Challenges to sequential representation learning
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● Preserving sequential distances / periodicity
Positional embeddings encode distances/periods.

● Capture multiple relationships
Multi-headed attention enables multiple compositions. 

● Easy to parallelize -- don’t need sequential processing.
Entire layer can be computed at once. Is only matrix 
multiplications + standardizing. 

The Transformer: Motivation


