
From Regressions to
Transformers

CSE545 - Spring 2023
Stony Brook University

H. Andrew Schwartz

 Big Data Analytics, The Class

Goal: Generalizations
A model or summarization of the data.

Hadoop File System

MapReduce

Spark

Deep Learning Frameworks

Similarity Search

Recommendation Systems
Link Analysis

Regressions->TransformersStreaming
Hypothesis Testing

Data Workflow Frameworks Analytics and Algorithms

 Big Data Analytics, The Class

Goal: Generalizations
A model or summarization of the data.

Hadoop File System

MapReduce

Spark

Deep Learning Frameworks

Similarity Search

Recommendation Systems
Link Analysis

Regressions->TransformersStreaming
Hypothesis Testing

Data Workflow Frameworks Analytics and Algorithms

Deep Learning

Already Covered:

● Pytorch as a dataflow system of with a graph of tensors, operations, and
building blocks

● Implementation of Linear Regression in PyTorch

● Minimizing error (concept of gradient descent)

● Parallelisms: Data Parallelism and Model Parallelism

(see topic (5) Neural Network Workflow Systems)

Deep Learning

Already Covered:

● Pytorch as a dataflow system of with a graph of tensors, operations, and
building blocks

● Implementation of Linear Regression in PyTorch

● Minimizing error (concept of gradient descent)

● Parallelisms: Data Parallelism and Model Parallelism

(see topic (5) Neural Network Workflow Systems)

Linear Regression and Gradient Descent

𝛽

loss

min

grad

(rasbt, http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

y = 𝛽0 +𝛽1x

y = mx + b

https://www.desmos.com/calculator/y8j7sejtuw
https://www.desmos.com/calculator/2usyk3ykts

https://www.desmos.com/calculator/y8j7sejtuw
https://www.desmos.com/calculator/2usyk3ykts

Linear Regression and Gradient Descent

loss = Σ (y_pred - y)2

(rasbt, http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

y_pred = 𝛽0 +𝛽1x

y_pred = mx + b

https://www.desmos.com/calculator/y8j7sejtuw
https://www.desmos.com/calculator/2usyk3ykts

https://www.desmos.com/calculator/y8j7sejtuw
https://www.desmos.com/calculator/2usyk3ykts

● Linear Regression

● Pearson Product-Moment Correlation

● Multiple Linear Regression

● (Multiple) Logistic Regression

● Ridge Regularized Linear/Logistic Regression

Regressions

● Linear Regression

● Pearson Product-Moment Correlation

● Multiple Linear Regression

● (Multiple) Logistic Regression

● Ridge Regularized Linear/Logistic Regression

Regressions

Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

Regression:

goal: estimate the function r

The expected value of Y, given
that the random variable X is
equal to some specific value, x.

Linear Regression

Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

Regression:

goal: estimate the function r

Linear Regression (univariate version):

goal: find 𝛽
0
, 𝛽

1
 such that

Linear Regression

more precisely

Linear Regression

Simple Linear Regression

Linear Regression

Simple Linear Regression

expected variance

intercept slope error

Linear Regression: Estimating Params

Simple Linear Regression

How to estimate intercept (ꞵ0) and slope intercept (ꞵ1)?

Least Squares Estimate. Find and which minimizes
the residual sum of squares:

J(ꞵ) = ^ ^

Covariance

Pearson Product-Moment Correlation

Covariance

Correlation

Pearson Product-Moment Correlation

Covariance

Correlation (standardized covariance)

Pearson Product-Moment Correlation

Lin Reg Direct Estimates
(normal equations)

Covariance

Correlation

Pearson Product-Moment Correlation

Lin Reg Direct Estimates
(normal equations)

Covariance

Correlation

Pearson Product-Moment Correlation

Lin Reg Direct Estimates
(normal equations)

Covariance

Correlation

If one standardizes X and Y (i.e. subtract the mean and divide by the
standard deviation) before running linear regression, then:
 ??

Pearson Product-Moment Correlation

Lin Reg Direct Estimates
(normal equations)

Covariance

Correlation

If one standardizes X and Y (i.e. subtract the mean and divide by the
standard deviation) before running linear regression, then:
 = 0 and = r --- i.e. is the Pearson correlation!

Pearson Product-Moment Correlation

Useful Plots: Correlation

Scatter Plot: for two variables expected to be associated (with optional regression line)

Correlation Matrix: for comparing associations between many variables (use Bonferroni correction if hyp testing)

(Chartio)

(Liu et al., 2016)

http://wwbp.org/papers/persimages16icwsm.pdf

● Linear Regression

● Pearson Product-Moment Correlation

● Multiple Linear Regression

● (Multiple) Logistic Regression

● Ridge Regularized Linear/Logistic Regression

Regressions

● Linear Regression

● Pearson Product-Moment Correlation

● Multiple Linear Regression

● (Multiple) Logistic Regression

● Ridge Regularized Linear/Logistic Regression

Regressions

Multiple Linear Regression

Simple Linear Regression

Estimated intercept and slope

Residual:

Suppose we have multiple X that we’d like to fit to Y at once:

If we include and X
oi

 = 1 for all i (i.e. adding the intercept to X), then we can
say:

Multiple Linear Regression

Suppose we have multiple X that we’d like to fit to Y at once:

If we include and X
oi

 = 1 for all i, then we can say:

Or in vector notation across all i:

where and are vectors and

X is a matrix.

Multiple Linear Regression

Suppose we have multiple X that we’d like to fit to Y at once:

If we include and X
oi

 = 1 for all i, then we can say:

Or in vector notation across all i:

where and are vectors and

X is a matrix.

Estimating :

Multiple Linear Regression

Suppose we have multiple X that we’d like to fit to Y at once:

If we include and X
oi

 = 1 for all i, then we can say:

Or in vector notation across all i:

where and are vectors and

X is a matrix.

Estimating :

 ← Use Gradient Descent

Multiple Linear Regression

● Linear Regression

● Pearson Product-Moment Correlation

● Multiple Linear Regression

● (Multiple) Logistic Regression

● Ridge Regularized Linear/Logistic Regression

Regressions

● Linear Regression

● Pearson Product-Moment Correlation

● Multiple Linear Regression

● (Multiple) Logistic Regression

● Ridge Regularized Linear/Logistic Regression

Regressions

Logistic Regression on a single feature (x)

Yi ∊ {0, 1}; X is a single value and can be anything numeric.

Logistic Regression on a single feature (x)

Yi ∊ {0, 1}; X is a single value and can be anything numeric.

Logistic Regression on a single feature (x)

Yi ∊ {0, 1}; X is a single value and can be anything numeric.

(vector multiply)

Yi ∊ {0, 1}; X can be anything numeric.

The goal of this function is to: take in the variable x and
return a probability that Y is 1.

Logistic Regression on a single feature (x)

Yi ∊ {0, 1}; X can be anything numeric.

The goal of this function is to: take in the variable x and
return a probability that Y is 1.

Note that there are only three variables on the right: Xi , B0 , B1

Logistic Regression on a single feature (x)

Yi ∊ {0, 1}; X can be anything numeric.

The goal of this function is to: take in the variable x and
return a probability that Y is 1.

Note that there are only three variables on the right: Xi , B0 , B1

X is given. B0 and B1 must be learned.

Logistic Regression on a single feature (x)

Yi ∊ {0, 1}; X can be anything numeric.

The goal of this function is to: take in the variable x and
return a probability that Y is 1.

Note that there are only three variables on the right: Xi , B0 , B1

X is given. B0 and B1 must be learned.

Logistic Regression on a single feature (x)

HOW? Essentially, try different B0
and B1 values until “best fit” to the
training data (example X and Y).

Yi ∊ {0, 1}; X can be anything numeric.

The goal of this function is to: take in the variable x and
return a probability that Y is 1.

Note that there are only three variables on the right: Xi , B0 , B1

X is given. B0 and B1 must be learned.

Logistic Regression on a single feature (x)

HOW? Essentially, try different B0
and B1 values until “best fit” to the
training data (example X and Y).

“best fit” : whatever maximizes the likelihood function:

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

“best fit” : more efficient to maximize log likelihood :

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

“best fit” : more efficient to maximize log likelihood :

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

“best fit” for neural networks: software designed to minimize rather than maximize
(typically, normalized by N, the number of examples.)

“best fit” : more efficient to maximize log likelihood :

From Likelihood to Cross Entropy Loss

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Final Cost Function: -- ”cross entropy error”

?

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Final Cost Function: -- ”cross entropy error”

From Likelihood to Cross Entropy Loss

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function: -- ”cross entropy error”

From Likelihood to Cross Entropy Loss

V is classes

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function: -- ”cross entropy error”

From Likelihood to Cross Entropy Loss

V is classes

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function: -- ”cross entropy error”

How to train in torch

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function: -- ”cross entropy error”

How to train in torch

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Cross-Entropy Cost: (a “multiclass” log loss)

How to train in torch

As a Graph?

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function: -- ”cross entropy error”

How to train in torch

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function: -- ”cross entropy error”

How to train in torch

To Optimize Betas (all weights/parameters within the neural net):

Stochastic Gradient Descent (SGD)
-- optimize over one sample each iteration

Mini-Batch SDG:
--optimize over b samples each iteration

X y
0

batch_size-1

N-batch_size

N

𝛳batch0

𝛳batch1

Combine
parameters

 Distributing Data

 Distributing Data
X y

0

batch_size-1

N-batch_size

N

𝛳batch0

𝛳batch1

Combine
parameters

update params of each node and repeat

X can be multiple features

Often we want to make a classification based on multiple features:

● Number of capital letters
surrounding: integer

● Begins with capital letter: {0, 1}
● Preceded by “the”? {0, 1}

Y-axis is Y (i.e. 1 or 0)

To make room for
multiple Xs, let’s get rid
of y-axis. Instead, show
decision point.

Logistic Regression is still "linear modeling"

Y-axis is Y (i.e. 1 or 0)

To make room for
multiple Xs, let’s get rid
of y-axis. Instead, show
decision point.

Logistic Regression is still "linear modeling"

1 feature 2 features

Logistic Regression is still "linear modeling"

We’re learning a linear (i.e. flat)
separating hyperplane, but fitting
it to a logit outcome.

Logistic Regression is still "linear modeling"

● Because we're still learning a linear "hyperplane"

We’re learning a linear (i.e. flat)
separating hyperplane, but fitting
it to a logit outcome.

X can be multiple features

We’re learning a linear (i.e. flat)
separating hyperplane, but fitting
it to a logit outcome.

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)

What if Yi ∊ {0, 1}? (i.e. we want “classification”)

We’re still learning a linear
separating hyperplane, but
fitting it to a logit outcome.

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)

Logistic Regression

1. Testing the relationship between variables given other
variables. 𝛽 is an “effect size” -- a score for the magnitude
of the relationship; can be tested for significance.

2. Building a predictive model that generalizes to new data.
Ŷ is an estimate value of Y given X.

Uses of Regressions

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Ŷ

 X
13

 X
14

 X
15

... X
m

1. Testing the relationship between variables given other
variables. 𝛽 is an “effect size” -- a score for the magnitude
of the relationship; can be tested for significance.

2. Building a predictive model that generalizes to new data.
Ŷ is an estimate value of Y given X.

Uses of Regressions

Task: Determine a function, f (or parameters to a function) such that f(X) = Y

1. Testing the relationship between variables given other
variables. 𝛽 is an “effect size” -- a score for the magnitude
of the relationship; can be tested for significance.

2. Building a predictive model that generalizes to new data.
Ŷ is an estimate value of Y given X.
However, when |features| close to number of observatations
then the model might “overfit”.

-> Regularized linear regression (a ML technique)

Uses of Regressions

● Linear Regression

● Pearson Product-Moment Correlation

● Multiple Linear Regression

● (Multiple) Logistic Regression

● Ridge Regularized Linear/Logistic Regression

Regressions

● Linear Regression

● Pearson Product-Moment Correlation

● Multiple Linear Regression

● (Multiple) Logistic Regression

● Ridge Regularized Linear/Logistic Regression

Regressions

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

Supervised Statistical Learning

Task: Determine a function, f (or parameters to a function) such that f(X) = Y

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

Task: Determine a function, f (or parameters to a function) such that f(X) = Y

Supervised Learning

1

1

0

0

1

X = Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

Logistic Regression - Regularization

1

1

0

0

1

X = Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

Logistic Regression - Regularization

1

1

0

0

1

X = Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

 1.2 + -63*x
1
 + 179*x

2
 + 71*x

3
 + 18*x

4
 + -59*x

5
 + 19*x

6
 = logit(Y)

Logistic Regression - Regularization

1

1

0

0

1

X = Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

 1.2 + -63*x
1
 + 179*x

2
 + 71*x

3
 + 18*x

4
 + -59*x

5
 + 19*x

6
 = logit(Y)

“overfitting”

colab

Logistic Regression - Regularization

https://colab.research.google.com/drive/1Q4iKFUUUL4fgDDUhs29s9I-7QFyXp0Wy?authuser=1#scrollTo=cfRcWRYRYiQd

Overfitting (1-d example)

Underfit

(image credit: Scikit-learn; in practice data are rarely this clear)

Overfitting (1-d example)

Underfit Overfit

(image credit: Scikit-learn; in practice data are rarely this clear)

Overfitting (1-d example)

1

1

0

0

1

X = Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

 1.2 + -63*x
1
 + 179*x

2
 + 71*x

3
 + 18*x

4
 + -59*x

5
 + 19*x

6
 = logit(Y)

“overfitting”

Overfitting (multidimenstional example)

1

1

0

0

1

X = Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

 1.2 + -63*x
1
 + 179*x

2
 + 71*x

3
 + 18*x

4
 + -59*x

5
 + 19*x

6
 = logit(Y)

“overfitting”
“overfitting”: generally
due to trying to fit too
many features given the
number of observations.

Overfitting (multidimenstional example)

Logistic Regression - Regularization

1

1

0

0

1

X = Y
0.5 0

0 0.5

0 0

0 0

0.25 1

What if only 2
predictors?

 x
1
 x

2

Overfitting (multidimenstional example)

Logistic Regression - Regularization

1

1

0

0

1

X = Y
0.5 0

0 0.5

0 0

0 0

0.25 1

 x
1
 x

2

Overfitting (multidimenstional example)

 0 + 2*x
1
 + 2*x

2

 = logit(Y)

What if only 2
predictors?
 A: better fit

(bad) solution to overfit problem

Use less features based on Forward Stepwise Selection:

● start with current_model just has the intercept (mean)
remaining_predictors = all_predictors
 for i in range(k):

#find best p to add to current_model:

for p in remaining_prepdictors

refit current_model with p

 #add best p, based on RSS
p
 to current_model

#remove p from remaining predictors

Logistic Regression - Regularization
Regularization: stepwise feature selection

No selection (weight=beta) forward stepwise

Why just keep or discard features?

Regularization: shrinkage

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Regularization: L2 (Ridge) Penalized Loss

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:

Regularization: L2 (Ridge) Penalized Loss

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:

Regularization: L2 (Ridge) Penalized Loss

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:

In Matrix Form:

I: m x m identity matrix

Regularization: L2 (Ridge) Penalized Loss

Common Goal: Generalize to new data

Original Data New Data?

Does the
model hold up?

Model

Common Goal: Generalize to new data

Training Data Testing Data

Model

Does the
model hold up?

Training
Data

Testing Data

Model

Develop-
ment
Data

Model

Set training
hyperparameters

Does the
model hold up?

ML: GOAL

Goal: Decent estimate of model accuracy

train testdev

All data

train testdev train

train testdev train

...

Iter 1

Iter 2

Iter 3

….

N-Fold Cross Validation

Useful Plots: Prediction

Learning Curve: for plotting error from gradient descent.

ROC Plot: for visualizing true-positive to false-positive rates (used for AUC metric)

for a model with
convex optimization
(i.e. linear regression)

for a model with
non-convex
optimization (i.e.
most deep learning)

(Dabura, 2017)

(PLOT_ROC)
(Eichstaedt et al., 2018)

https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3
https://scikit-learn.org/0.15/auto_examples/plot_roc.html

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

From Linear Models to Neural Nets

z = wX

Logistic: 𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Common Activation Functions

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

Z

Batch Normalization

From Linear Models to Neural Nets

(Ioffe and Szegedy, 2015)

Batch Normalization

(Ioffe and Szegedy, 2015)

This is just standardizing!
(but within the current batch of
observations)

Batch Normalization

(Ioffe and Szegedy, 2015)

This is just standardizing!
(but within the current batch of
observations)

Why?
● Empirically, it works!
● Conceptually, generally good

for weight optimization to
keep data within a reasonable
range (dividing by sigma) and
such that positive weights
move it up and negative down
(centering).

● Small effect: When done over
mini-batches, adds
regularization due to
differences between batches.

Batch Normalization

Useful Plots: For distributions

(Lewinson, 2019)

https://towardsdatascience.com/violin-plots-explained-fb1d115e023d

Useful Plots: Correlation

Scatter Plot: for two variables expected to be associated (with optional regression line)

Correlation Matrix: for comparing associations between many variables (use Bonferroni correction if hyp testing)

(Chartio)

(Liu et al., 2016)

http://wwbp.org/papers/persimages16icwsm.pdf

Useful Plots: Any Values

Bar Plot: To visually compare values
under different selections/conditions.

Line Plot: When one variable has a natural ordering (e.g. time)

(Eichstaedt et al., 2018)(Science sEDiment)

deaths
per
100k

Pearson r

-- assigning a probability to a sequences of words.

The Transformer: NN Sequence Modeling

-- assigning a probability to a sequences of elements.

Common Formulation: Model P(en| e1, e2, …, en-1)
:the probability of a next element given history

The Transformer: NN Sequence Modeling

-- assigning a probability to a sequences of words.

Common Formulation: Model P(wn| w1, w2, …, wn-1)
:the probability of a next word given history

Language Modeling

-- assigning a probability to a sequences of words.

Common Formulation: Model P(wn| w1, w2, …, wn-1)
:the probability of a next word given history

Task Formulation:

 Input: the previous words, w1, w2, …, wn-1
 Output: a probability for the next word, wn

 P(w4 | w1='Im', w2='feeling', w3='very') = ??

Language Modeling

-- assigning a probability to a sequences of words.

Common Formulation: Model P(wn| w1, w2, …, wn-1)
:the probability of a next word given history

Task Formulation:

 Input: the previous words, w1, w2, …, wn-1
 Output: a probability for the next word, wn

 P(w4='rhapsodic' | w1='Im', w2='feeling', w3='very') = ??

Language Modeling

-- assigning a probability to a sequences of words.

Common Formulation: Model P(wn| w1, w2, …, wn-1)
:the probability of a next word given history

Task Formulation:

 Input: the previous words, w1, w2, …, wn-1
 Output: a probability for the next word, wn

 P(w4='rhapsodic' | w1='Im', w2='feeling', w3='very') =
0.0012

Language Modeling

-- assigning a probability to a sequences of words.

Common Formulation: Model P(wn| w1, w2, …, wn-1)
:the probability of a next word given history

Task Formulation:

 Input: the previous words, w1, w2, …, wn-1
 Output: a probability for the next word, wn

 P('good' | 'Im', 'feeling', 'very') = _count('Im feeling very good')_
 count('Im feeling very *')

"maximum likelihood estimate"
Simple way to estimate, but
mostly only works ok for short
phrases.

Language Modeling

-- assigning a probability to a sequences of words.

Common Formulation: Model P(wn| w1, w2, …, wn-1)
:the probability of a next word given history

Task Formulation:

 Input: the previous words, w1, w2, …, wn-1
 Output: a probability for the next word, wn
 (i.e. a "probability distribution")

 P(wn | 'Im', 'feeling', 'very') =
 'good' 'clever' 'stressed' 'a' 'rhapsodic' 'blue'

Language Modeling

-- assigning a probability to a sequences of words.

Common Formulation: Model P(wn| w1, w2, …, wn-1)
:the probability of a next word given history

Task Formulation:

 Input: the previous words, w1, w2, …, wn-1
 Output: a probability for the next word, wn
 (i.e. a "probability distribution")

 P(wn | 'Im', 'feeling', 'very') =
 'good' 'clever' 'stressed' 'a' 'rhapsodic' 'blue'

Language Modeling

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words

P(He ate the cake with the fork) = ?

Version 2: Compute P(w5| w1, w2, w3, w4)
= P(wn| w1, w2, …, wn-1)

:probability of a next word given history
P(fork | He ate the cake with the) = ?

Applications:
● Auto-complete: What word is next?
● Machine Translation: Which translation is most likely?
● Spell Correction: Which word is most likely given error?
● Speech Recognition: What did they just say?

“eyes aw of an”
(example from Jurafsky, 2017)

Language Modeling

Timeline: Language Modeling and Vector Semantics

GPT3.5

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Timeline: Language Modeling and Vector Semantics

GPT3.5

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3.5

BERT

ELMO

GPT
XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Timeline: Language Modeling and Vector Semantics

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT3.5

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT3.5

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT3.5

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3.5

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

(Li et al. ,2015; Jurafsky et al., 2019)

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3.5

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

10
2

18
103

9

(Li et al. ,2015; Jurafsky et al., 2019)

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3.5

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

Switzer: Vector
Space Models

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

 beam
embed

To embed: convert a token (or sequence) to a vector that represents meaning.

Word Vectors

 beam
embed

0
…
0
1
…
0

"one-hot encoding"

To embed: convert a token (or sequence) to a vector that represents meaning.

Word Vectors

 beam embed
0
…
0
1
…
0

Prefer dense vectors; why?

● Less parameters (weights) for
machine learning model.

● May generalize better implicitly.
● May capture synonyms

"one-hot encoding"

To embed: convert a token (or sequence) to a vector that represents meaning.

Word Vectors

The nail hit the beam behind the wall.

Word Vectors

To embed: convert a token (or sequence) to a vector that represents meaning.

Wittgenstein, 1945: “The meaning of a word is its use in the language”

Distributional hypothesis -- A word’s meaning is defined by all the different
contexts it appears in (i.e. how it is “distributed” in natural language).

Firth, 1957: “You shall know a word by the company it keeps”

The nail hit the beam behind the wall.

Word Vectors

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3.5

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

Switzer: Vector
Space Models

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Switzer: Vector
Space Models

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT3.5

Person A Person B
How are you? I feel fine –even great! My life is a great mess! I’m

having a very hard time being
happy.

What is going on? Earlier, I played the game
Yahtzee with my partner. I
could not get that die to roll
a 1! Now I’m lying on my
bed for a rest.

My business partner was lying
to me. He was trying to game
the system and played me. I
think I am going to die –he left
and now I have to pay the rest
of his fine.

(Kjell, Kjell, and Schwartz, 2023)

Word Vectors

great
embed

0.53
1.5
3.21
-2.3
.76

Objective

great
embed

0.53
1.5
3.21
-2.3
.76

great.a.1 (relatively large in size or number
or extent; larger than others of its kind)

great.a.2, outstanding (of major significance
or importance)

great.a.3 (remarkable or out of the ordinary
in degree or magnitude or effect)

bang-up, bully, corking, cracking, dandy,
great.a.4, groovy, keen, neat, nifty, not bad,
peachy, slap-up, swell, smashing, old (very
good)

capital, great.a.5, majuscule (uppercase)

big, enceinte, expectant, gravid, great.a.6,
large, heavy, with child (in an advanced
stage of pregnancy)

?

Objective

great
embed

0.53
1.5
3.21
-2.3
.76

great.a.1 (relatively large in size or number
or extent; larger than others of its kind)

great.a.2, outstanding (of major significance
or importance)

great.a.3 (remarkable or out of the ordinary
in degree or magnitude or effect)

bang-up, bully, corking, cracking, dandy,
great.a.4, groovy, keen, neat, nifty, not bad,
peachy, slap-up, swell, smashing, old (very
good)

capital, great.a.5, majuscule (uppercase)

big, enceinte, expectant, gravid, great.a.6,
large, heavy, with child (in an advanced
stage of pregnancy)

great.n.1 (a person who has achieved
distinction and honor in some field)

?

Objective

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Switzer: Vector
Space Models

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT3.5

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Switzer: Vector
Space Models

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT3.5

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT3.5

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html

GPT3.5

http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT3.5

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT3.5

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT3.5

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT3.5

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3.5

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

word vectors

more neural networks
(capturing context)

Word Probabilities

Deep Learning
for Language

Modeling!
(time for break)

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

ELMO

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Language modeling
with an RNN

Recurrent Neural Network

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

ELMO

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

BERT

ELMO

GPT
XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Challenges to sequential representation learning

● Capture long-distance dependencies

● Preserving sequential distances / periodicity

● Capture multiple relationships

● Easy to parallelize -- don’t need sequential processing.

The Transformer: Motivation

Challenge:

● Long distance dependency when translating:

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Kayla kicked the ball.

The ball was kicked by kayla.

The Transformer: Attention-only Models

Challenge:

● Long distance dependency when translating:

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Kayla kicked the ball.

The ball was kicked by kayla.

The Transformer: Attention-only Models

My life is a great messsentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k:
(used for language modeling)

Transformer Language Models: Uses multiple layers of a transformer

auto-encoder:
● Connections go both directions.
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)

auto-encoder:
● Connections go both directions.
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)

auto-regressor (generator):
● Connections go forward only
● Task is predict word next word:

p(wi| wi-1, wi-2, …)
● Better for:

○ generating text
○ zero-shot learning

auto-encoder:
● Connections go both directions.
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)

auto-regressor (generator):
● Connections go forward only
● Task is predict word next word:

p(wi| wi-1, wi-2, …)
● Better for:

○ generating text
○ zero-shot learning

…

…

…

…

…

…

…

…

…

…

…

…

The Transformer's Heart: Self-Attention

yi-1 yi yi+1 yi+2

hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

… …

The Transformer's Heart: Self-Attention

yi-1 yi yi+1 yi+2

hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

Attend to all other words in
the sequence

The Transformer's Heart: Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2I'm feeling very elated.

yi-1 yi yi+1 yi+2

Attend to all other words in
the sequence

The Transformer's Heart: Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2

yi-1 yi yi+1 yi+2

A weighted combination of
other words' vectors.

I'm feeling very elated.

The Transformer's Heart: Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2

yi-1 yi yi+1 yi+2

The Transformer's Heart: Self-Attention

wi-1 wi wi+1 wi+2 ….

Output

α

𝜓

h
hi-1 hi hi+1
hi+2

yi-1 yi yi+1 yi+2

I'm feeling very elated.

The Transformer's Heart: Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1 hi+2

…wi-1 wi wi+1 wi+2 ….

yi-1 yi yi+1 yi+2

...

The Transformer's Heart: Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

The Transformer's Heart: Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

ktq

The Transformer's Heart: Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

scaling
parameter

(ktq) σ(k,q)

The Transformer's Heart: Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

Linear layer:
WTX

One set of weights for
each of for K, Q, and V

ktq(k,q) (ktq) σ

The Transformer's Heart: Self-Attention

Self-Attention in PyTorch

import nn.functional as f
class SelfAttention(nn.Module):

def __init__(self, h_dim:int):
self.Q = nn.Linear(h_dim, h_dim) #1 head
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):
v = self.V(hidden_states)
k = self.K(hidden_states)
q = self.Q(hidden_states)
attn_scores = torch.matmul(q, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context

ktq(k,q) (ktq) σ

Linear layer:
WTX

One set of weights
for each of for K,
Q, and V

Self-Attention in PyTorch

import nn.functional as f
class SelfAttention(nn.Module):

def __init__(self, h_dim:int):
self.Q = nn.Linear(h_dim, h_dim) #1 head
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):
v = self.V(hidden_states)
k = self.K(hidden_states)
q = self.Q(hidden_states)
attn_scores = torch.matmul(q, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context

ktq(k,q) (ktq) σ

Linear layer:
WTX

One set of weights
for each of for K,
Q, and V

Self-Attention in PyTorch

import nn.functional as f
class SelfAttention(nn.Module):

def __init__(self, h_dim:int):
self.Q = nn.Linear(h_dim, h_dim) #1 head
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):
v = self.V(hidden_states)
k = self.K(hidden_states)
q = self.Q(hidden_states)
attn_scores = torch.matmul(q, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context

ktq(k,q) (ktq) σ

Linear layer:
WTX

One set of weights
for each of for K,
Q, and V

Limitation (thus far): Can’t capture multiple types of dependencies between words.

The Transformer: Beyond Self-Attention

Solution: Multi-head attention

The Transformer: Beyond Self-Attention

Limitation (thus far): Can’t capture multiple types of dependencies between words.

The Transformer: Muli-headed Attention

The Transformer

sequence index (t)

The Transformer

The Transformer

Residualized
Connections

The Transformer

Residualized
Connections

residuals enable
positional
information to be
passed along

The Transformer

Challenges to sequential representation learning

● Capture long-distance dependencies
Self-attention treats far away words similar to those close.

● Preserving sequential distances / periodicity
Positional embeddings encode distances/periods.

● Capture multiple relationships
Multi-headed attention enables multiple compositions.

● Easy to parallelize -- don’t need sequential processing.
Entire layer can be computed at once. Is only matrix
multiplications + standardizing.

The Transformer: Motivation

Challenges to sequential representation learning

● Capture long-distance dependencies
Self-attention treats far away words similar to those close.

● Preserving sequential distances / periodicity
Positional embeddings encode distances/periods.

● Capture multiple relationships
Multi-headed attention enables multiple compositions.

● Easy to parallelize -- don’t need sequential processing.
Entire layer can be computed at once. Is only matrix
multiplications + standardizing.

The Transformer: Motivation

Transformer (as of 2017)

“WMT-2014” Data Set. BLEU scores:

Transformers as of 2023

General Language Understanding Evaluations:

https://gluebenchmark.com/leaderboard

https://super.gluebenchmark.com/leaderboard/

https://gluebenchmark.com/leaderboard
https://super.gluebenchmark.com/leaderboard/

Large Transformer Language Model

Classifier

Assistant,
QA

Machine
Translation

Web
Search

Document
Classification

Sentiment
Analysis …

absolutamente
me gustaría ir
de excursión

(NLP System)

Language

Soni, N., Matero, M.,
Balasubramanian, N., &
Schwartz, H. (2022, May).
Human Language Modeling. In
Findings of the Association for
Computational Linguistics: ACL
2022 (pp. 622-636).

Transformers as of 2023

Bert: Attention by Layers
https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

(Vig, 2019)

https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

BERT Performance: e.g. Question Answering

https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/

BERT: Pre-training; Fine-tuning

12 or 24 layers

BERT: Pre-training; Fine-tuning

12 or 24 layers

BERT: Pre-training; Fine-tuning

12 or 24 layers

Novel classifier
(e.g. sentiment classifier; stance detector...etc..)

Challenges to sequential representation learning

● Capture long-distance dependencies
Self-attention treats far away words similar to those close.

● Preserving sequential distances / periodicity
Positional embeddings encode distances/periods.

● Capture multiple relationships
Multi-headed attention enables multiple compositions.

● Easy to parallelize -- don’t need sequential processing.
Entire layer can be computed at once. Is only matrix
multiplications + standardizing.

The Transformer: Motivation

